

BARRETT MAHONY CIVIL & STRUCTURAL CONSULTING ENGINEERS

Infrastructure Planning Report

Project: Holy Cross College SHD

Job No. 19.253

DOCUMENT CONTROL

Project:	Lands at Holy Cross College, Clonliffe Road, Dublin 3 and Drumcondra Road Lower, Drumcondra, Dublin 9.
Project No:	19.253
Document Title:	Infrastructure Planning Report
Document No:	19.253.IR.01

DOCUMENT STATUS

Issue	Date	Description	Orig.	PE	Issue Check
P01	09/10/2020	Issue for Comment	MH	МН	Michael Hughes
P02	04/11/2020	Issue for PAC	МН	МН	Michael Hughes
P03	30/05/2021	Update draft	MH	MH	Michael Hughes

© Copyright Barrett Mahony Consulting Engineers. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by Barrett Mahony Consulting Engineers no other party may use, make use of or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by Barrett Mahony Consulting Engineers for any use of this report, other than the purpose for which it was prepared. Barrett Mahony Consulting Engineers accepts no responsibility for any documents or information supplied to Barrett Mahony Consulting Engineers by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made. Barrett Mahony Consulting Engineers has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of Barrett Mahony Consulting Engineers.

Prepared by:

BMCE

52-54 Lower Sandwith Street Dublin 2 D02WR26 Prepared for:

CWTC Multi Family ICAV acting on behalf of its sub fund DBTR DR1 Fund Block 2, First Floor

Clanwilliam House, Clanwilliam Place

Dublin 2

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL www.bmce.ie

TABLE OF CONTENTS

1.0	IN	ITRODUCTION1	L
1.1		GENERAL DESCRIPTION1	L
1.2		SCOPE OF THIS REPORT	?
2.0	RE	ESPONSE TO DCC DRAINAGE COMMENTS ON PAC SUBMISSION	;
3.0	EX	(ISTING DRAINAGE SYSTEMS	3
3.1		EXISTING PUBLIC DRAINAGE SYSTEMS IN VICINITY OF SITE	}
3.2		EXISTING DRAINAGE SYSTEMS ON THE SUBJECT SITE	;
4.0	SL	JRFACE WATER DRAINAGE SYSTEMS	5
4.1		PROPOSED SURFACE WATER DRAINAGE SYSTEM	;
4.1.	1	Catchment Area6	;
4.1.	2	Catchment Strategy	,
4.1.	2.1	Sub-Catchment 1: Blocks A and surrounds - North	7
4.1.	2.2	Sub-Catchment 2: Blocks B, C, D, E – Centre	3
4.1.	2.3	Sub-Catchment 3: Block C2 – South	3
4.1.	3	Estimation of greenfield runoff rate	;
4.1.	4	Flow Network Model input)
4.2		PROPOSED SURFACE WATER MANAGEMENT PLAN)
4.2.	1	Proposed Surface Water Treatment Train)
4.2.	2	Proposed Surface Water Treatment SuDS Measures12	2
	-		
4.2.	3	The Greater Dublin Strategic Drainage Study13	5
4.2. <i>4.2.</i>	3 3.1	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14	1
4.2. <i>4.2.</i> 4.2.	3 3.1 4	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15	8 1 1
4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15	B 1 5
4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15	8 1 5 7
4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4.1 4.2 4.3	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16	3 1 5 5 5
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4.1 4.2 4.3 4.4	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16	8 4 5 5 5 5 5
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4.1 4.2 4.3 4.4 5	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16	8455555
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4.1 4.2 4.3 4.4 5 6	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17	
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4.1 4.2 4.3 4.4 5 6 7	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17	
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Criterion 2 GDSDS - River Regime Protection 16 Criterion 3 GDSDS - Level of Service For the Site 17 Criterion 4 GDSDS - River Flood Protection 17 SUMMARY OF SUDS MEASURES 17	8 4 i i i i i i i i i i i i i i i i i i
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Interception Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17	* 4 * > > > > > > > + + + + +
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Interception Storage 16 Criterion 2 GDSDS - River Regime Protection 16 Criterion 3 GDSDS - Level of Service For the Site 17 Criterion 4 GDSDS - River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18	8 4 5 5 5 5 5 5 F F F F
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18	8 4 5 5 5 5 5 7 7 7 B
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS - River Regime Protection 16 Criterion 3 GDSDS - Level of Service For the Site 17 Criterion 4 GDSDS - River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18	3 4 5 5 5 5 5 7 7 7 8 6 6
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 Residential Flow – 1614 no. units 18	3 4 5 5 5 5 5 7 7 7 8 1 1 1
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 5.0 5.1 5.2 5.2. 5.2.	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC 1 2	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS - River Regime Protection 16 Criterion 3 GDSDS - Level of Service For the Site 17 Criterion 4 GDSDS - River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 Residential Flow - 1614 no. units 18 Foul Network Design 15	3 4 5 5 5 5 7 7 7 7 7 8 8 8 8 1 1 1
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 5.1 5.2 5.2. 5.2. 6.0	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC 1 2 W	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 Proul Network Design 19 VATER SUPPLY 20	5455557777 S S S S S S S S S S S S S S S S
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 5.0 5.1 5.2 5.2. 5.2. 5.2. 6.0 6.1	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC 1 2 W	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 Poul Network Design 15 VATER SUPPLY 20 Existing WATERMAIN INFRASTRUCTURE 20	8455557777 SHIFT))
4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 5.1 5.2 5.2. 5.2. 5.2. 6.0 6.1 6.2	3 3.1 4 4.1 4.2 4.3 4.4 5 6 7 FC 1 2 W	The Greater Dublin Strategic Drainage Study 13 Criterion 1 GDSDS – River Water Quality Protection 14 Interception Storage 15 Interception Storage - Catchment 1 15 Interception Storage - Catchment 2 15 Interception Storage - Catchment 3 16 Treatment Storage - Catchment 3 16 Treatment Storage 16 Criterion 2 GDSDS – River Regime Protection 16 Criterion 3 GDSDS – Level of Service For the Site 17 Criterion 4 GDSDS – River Flood Protection 17 SUMMARY OF SUDS MEASURES 17 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN 17 DUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 PROPOSED FOUL DRAINAGE SYSTEM 18 Foul Network Design 15 //ATER SUPPLY 20 EXISTING WATERMAIN INFRASTRUCTURE 20 PROPOSED WATERMAINS 20 PROPOSED WATERMAINS 20	5455557777 SEEED D D D D D D D D D D D D D D D D D

21	Watermain Design	6.2.2
	raffic engineering	7.0 T
	-LOOD RISK ASSESSMENT	8.0 F

APPENDICES

APPENDIX 1	- Foul Loading Calculations
APPENDIX 2	- Green Roof Areas
APPENDIX 3	- Causeway Flow Simulations
APPENDIX 4	- Soakaway Test Results
APPENDIX 5	- DCC / IW Drainage and Watermain Records
APPENDIX 6	- Irish Water Confirmation of Feasibility Letter
APPENDIX 7	- Irish Water Statement of Design Acceptance
APPENDIX 8	- BMCE Technical Memo to DCC Drainage Division
APPENDIX 9	- M&E Schematic Water Services Drawings

1.0 INTRODUCTION

1.1 GENERAL DESCRIPTION

This report has been prepared as part of a planning application for a proposed residential development at Clonliffe Road, Drumcondra, on behalf of the applicant, CWTC Multi Family ICAV acting on behalf of its sub-fund DBTR DR1 Fund. This report describes the proposed civil engineering infrastructure for the development and how it connects to the public infrastructure serving the area.

The project involves the development of lands at Holy Cross College, Clonliffe Road, Dublin 3 and Drumcondra Road Lower, Drumcondra, Dublin 9. The lands encompass a site of 14.76ha, of which 7.74ha relates directly to the residential proposed development. The remaining 7.02ha (which is outside the scope of this application) is intended for use as a GAA sports facilities and, as well as a new hotel.

The lands are located within the grounds of the former Holy Cross College seminary. The site is bounded by Clonliffe Road to the south, the Archbishop of Dublin's residence and Lower Drumcondra Road to the West, residential and private lands to the east, and the Tolka River runs the full length of the northern boundary. The site is currently predominantly green space (with trees) with a number of existing structures which formed the seminary campus. Refer Figure 1.1 and Site Plan Layout drawing in Appendix I for a satellite and plan view of the site.

The development will consist of the construction of a Build To Rent residential development set out in 12 no. blocks, ranging in height from 3 to 18 storeys, to accommodate 1614 no. apartments (comprising 540 studios, 602 no. 1 bed units, 419 no. 2 bed units and 53 no. 3 bed units) including a retail unit, a café unit, a crèche, and residential tenant amenity spaces. The development will include a single level basement under Blocks B2, B3 & C1, a single level basement under Block D2 and a podium level and single level basement under Block A1 to accommodate car parking spaces, bicycle parking, storage, services and plant areas. To facilitate the proposed development the scheme will involve the demolition of a number of existing structures on the site.

The proposed development sits as part of a wider Site Masterplan for the entire Holy Cross College lands which includes a permitted hotel development and future proposed GAA pitches and clubhouse.

The site contains a number of Protected Structures including The Seminary Building, Holy Cross Chapel, South Link Building, The Assembly Hall and The Ambulatory. The application proposes the renovation and extension of the Seminary Building to accommodate residential units and the renovation of the existing Holy Cross Chapel and Assembly Hall buildings for use as residential tenant amenity. The wider Holy Cross College lands also includes Protected Structures including The Red House and the Archbishop's House (no works are proposed to these Structures).

The residential buildings are arranged around a number of proposed public open spaces and routes throughout the site with extensive landscaping and tree planting proposed. Communal amenity spaces will be located adjacent to residential buildings and at roof level throughout the scheme. To facilitate the proposed development the scheme will involve the removal of some existing trees on the site.

The site is proposed to be accessed by vehicles, cyclists and pedestrians from a widened entrance on Clonliffe Road, at the junction with Jones's Road and through the opening up of an unused

access point on Drumcondra Road Lower at the junction with Hollybank Rd. An additional cyclist and pedestrian access is proposed through an existing access point on Holy Cross Avenue. Access from the Clonliffe Road entrance will also facilitate vehicular access to future proposed GAA pitches and clubhouse to the north of the site and to a permitted hotel on Clonliffe Road.

The proposed application includes all site landscaping works, green roofs, boundary treatments, PV panels at roof level, ESB Substations, lighting, servicing and utilities, signage, and associated and ancillary works, including site development works above and below ground.

Figure 1.1 Site Location Map Data © 2020 Google

1.2 SCOPE OF THIS REPORT

This report describes the proposed civil engineering infrastructure for the development and how it connects to the public infrastructure serving the area. In particular proposed surface water drainage, foul drainage and water supply elements are addressed.

A Site Specific Flood Risk Assessment report (specifically focused on residential lands) has been prepared by Barrett Mahony Consulting Engineers (BMCE) and submitted as part of this application.

Furthermore, a Masterplan Area Flood Risk Assessment (specifically focused on the balance of the GAA owned masterplan lands) and a Construction Surface Water Management Plan have been prepared, as specifically requested by DCC Drainage Division.

Roads infrastructure, traffic engineering and mobility management plan are not within the remit of BMCE. These elements are covered elsewhere within the application documentation.

This report should be read in conjunction with BMCE drawings submitted with the planning application.

2.0 RESPONSE TO DCC DRAINAGE COMMENTS ON PAC SUBMISSION

DCC Drainage Division commented upon the surface water and flood risk aspects of the PAC submission, and this formed part of their submission to ABP at PAC stage.

BMCE have liaised with DCC Drainage in respect of their comments and we have submitted a technical memo (19.253.MO.002) to DCC on 2 April 2021. The memo is included in Appendix 8, and certain changes to the surface water design have been incorporated into the submitted drawings, arising from same.

3.0 EXISTING DRAINAGE SYSTEMS

3.1 EXISTING PUBLIC DRAINAGE SYSTEMS IN VICINITY OF SITE

The existing drainage systems on the site are mainly combined systems (carrying foul and surface water). There are connections from the site to the existing sewerage network on Clonliffe Road and also to the 675mm diameter combined sewer, which traverses the north east quadrant of the masterplan lands.

There is an existing 225mm combined sewer on Holy Cross Avenue which discharges in a southerly direction and connects to the 375mm diameter combined sewer on Clonliffe Road. This 375mm sewer on Clonliffe Road discharges in an easterly direction and connects into a 450mm diameter combined sewer downstream.

There also a 675mm diameter combined sewer in the north east quadrant of the masterplan lands, crossing the lower lying grassed area in a south easterly direction. The existing sewerage network in the vicinity of the site eventually discharges to the Poplar Row pumping station (to the east) and from there sewage is pumped to the municipal wastewater treatment at Ringsend. Refer to Appendix 4 for a copy of the Dublin City Council (DCC) and Irish Water drainage and watermain records.

3.2 EXISTING DRAINAGE SYSTEMS ON THE SUBJECT SITE

On site, there is a combination of combined drains and surface water drains.

There is an existing surface water system which collects run-off from the internal access roads, via road gullies, before discharging in a southerly direction into the 375mm diameter combined sewer on Clonliffe Road.

There is an existing combined system serving the cluster of Seminary Buildings, majority of which discharges in a southerly direction, into the 225mm combined sewer on Holy Cross Avenue, and from there into the 375mm combined sewer on Clonliffe Road. A small portion of the combined drainage system discharges in a northerly direction and into the 675mm diameter combined public. Refer to BMCE drawing CLA-BMD-00-ZZ-DR-C-1001 Sheets S1-S4 for a copy of the existing drainage site plan layouts.

As part of the discussions with Irish Water at Pre-connection Enquiry stage, a detailed assessment was carried out to calculate the surface water and foul drainage flows entering the Irish Water public system from the subject site, in the existing situation and in the proposed situation.

The location of the existing and proposed outfall locations is indicated in Fig 3.2.

Figure 3.2 Drainage Outfall Locations

The existing and proposed flows are set out in Table 3.2.

The new development will comprise a separated drainage system, wherein the vast majority of surface water will not discharge into IW combined sewers, but rather will be attenuated to 2litres/sec/hectare (slowed down and temporarily stored) and discharged to the Tolka River. Due to this fact it is demonstrated that there is a significant reduction in overall discharge from the Holy Cross Lands into Irish Water sewers, during storm conditions, and this reduction ranges from 51% to 71%, depending on the storm event analysed.

Table 3.2 Existing and Proposed Drainage Flows

Drainage Flows For Existin	ng Arrangei	ments					
Outfall Ref	Peak Foul flow l/sec	SW flow (1 in 1yr) l/sec	SW flow (1 in 30yr) I/sec	SW flow (1 in 100yr) I/sec	Scenario 1 (peak foul flow <u>plus</u> 1 in 1 year SW storm)	Scenario 2 (peak foul flow <u>plus</u> 1 in 30 year SW storm)	Scenario 1 (peak foul flow <u>plus</u> 1 in 100 year SW storm)
A (at 675mm sewer)	0.93	67.75	199.12	277.94	0.93 + 67.75 = 68.68	0.93 + 199.12 = 200.05	0.93 + 277.94 = 278.87
B (at Holy Cross Ave)	3.74	71.84	211.13	294.70	3.74 + 71.84 = 75.58	3.74 + 211.13 = 214.87	3.74 + 294.70 = 298.44
C (at Junction Clonliffe Road and Jones Road)	0	47.08	138.35	193.11	47.08	138.35	193.11
Total discharge rates (foul and surface) into IW system for various scenarios					191.34	553.27	770.42
Drainage Flows For Propo	sed Arrang	ements					
Outfall Ref	Peak Foul flow l/sec	SW flow (1 in 1yr) I/sec	SW flow (1 in 30yr) I/sec	SW flow (1 in 100yr) I/sec	Scenario 1 (peak foul flow <u>plus</u> 1 in 1 year SW storm)	Scenario 2 (peak foul flow <u>plus</u> 1 in 30 year SW storm)	Scenario 1 (peak foul flow <u>plus</u> 1 in 100 year SW storm)
A (at 675mm sewer) This outfall point will be removed in the new arrangements	0	0	0	0	0	0	0
B (at Holy Cross Ave)	0	33.35	98	136.79	33.35	98	136.79
C (at Junction Clonliffe Road and Jones Road)	0	6.58	19.33	26.99	6.58	19.33	26.99
C1.0 (at Junction Clonliffe Road and Jones Road)	2.11	4.42	9.11	11.92	2.11 + 4.42 = 6.53	2.11 + 9.11 = 11.22	2.11 + 11.92 = 14.03
D (at Junction Clonliffe Road and Jones Road) serving new hotel only	5.21	2.0	2.0	2.0	7.21	7.21	7.21
E (into 675 sewer at NW corner of site)	14.39	0	0	0	14.39	14.39	14.39
F (into 675 sewer at NE corner of site)	26.15	0	0	0	26.15	26.15	26.15
Total discharge rates (foul and surface) into IW system for various scenarios					94.21	176.29	225.56
Percentage Reduction in overall discharge from Holy Cross Lands into IW sewers					51%	69%	71%

4.0 SURFACE WATER DRAINAGE SYSTEMS

Drainage from the proposed development will be drained on the basis of a completely separate system.

The foul system will connect to the Irish Water network at three locations including two connection points into the existing 675mm combined sewer and a third connection on Clonliffe Road (refer to Figure 3.2 above).

The surface water system will be attenuated prior to discharge into the River Tolka with the exception of Building C2 adjacent to Clonliffe Road which will discharge at a restricted flow, attenuated and into the Irish Water combined sewer on Clonliffe Road.

The drainage systems will be designed in accordance with Part H of the Building Regulations, EN 752 Drain and Sewer Systems outside Buildings, The Greater Dublin Regional Code of Practice for Drainage Works, Irish Water's Code of Practice for Wastewater and to DCC Drainage Division and Irish Water requirements.

4.1 PROPOSED SURFACE WATER DRAINAGE SYSTEM

Surface water run-off from the proposed development will drain by gravity and will be attenuated prior to discharge into the River Tolka with the exception of Building C2 adjacent to Clonliffe Road which will discharge at a restricted attenuated flow into the Irish Water combined sewer on Clonliffe Road. SuDS will be incorporated into the development and will include green roofs, permeable paving, filter drains, rain garden and shallow infiltration systems. Surface water run-off will go through a minimum of two-stage treatment prior to discharge by gravity into the receiving systems.

In response to DCC Drainage Division comments re sustainable drainage systems and the requirement for a minimum two-stage treatment train, the design team have reviewed the surface water strategy in detail, and have amended the surface water design in order to incorporate additional sustainable drainage measures where feasible. The amended design seeks to place greater emphasis on integrating increased opportunities for interception of surface water at source, through natural retention measures.

Please refer to BMCE drawings CLA-BMD-00-ZZ-DR-C-1005-S1 and CLA-BMD-00-ZZ-DR-C-1005-S2 showing the amended SuDS strategy layouts.

The proposed SuDs measures will reduce the quantity and improve the quality of water discharging into the receiving systems, see Section 4.3 for further information on the proposed sustainable measures.

The proposed surface water drainage system will be designed in accordance with DCC Drainage Division and Irish Water requirements. Refer to BMCE drawings CLA-BMD-00-ZZ-DR-C-1008 – Sheets S1-S8 for layout of the proposed surface water drainage.

4.1.1 Catchment Area

The site is divided into a number of surface water drainage catchments. The catchment areas have different SuDS measures which will have an influence on the runoff coefficient. The more porous the material, the lower the runoff coefficient. Materials in the area will consist of, but not limited

to, Permeable Paving, Green roof structures, solid roofs, impermeable areas, tree pits, filter strips, infiltration trenches and landscaped grass areas.

4.1.2 Catchment Strategy

The development will be served by 3no separated surface water drainage sub catchment areas, Each sub catchment will be served by a gravity drainage network, with run-off attenuated in each catchment prior to discharging to the Tolka river or the public network in Clonliffe road. The proposed catchment division is as follows:

- 1. Blocks A and surrounds (will drain by gravity towards the Tolka river)
- 2. Blocks B, C, D, E with the exception of block C2, which will drain towards the Tolka river.
- 3. Block C2 which will drain to the existing network in Clonliffe road.

4.1.2.1 Sub-Catchment 1: Blocks A and surrounds - North

The catchment area consists of various residential blocks with runoff directed to 2no. cellular attenuation storage tanks. The tanks has been designed to facilitate the 1 in 200 year flood evel from the Tolka river. The flood level of 5.40m was used as a invert (although the constructed invert will be 5.15m. The attenuation tank has been designed to cater for the unlikely event of a 1 in 200 year flood, having enough capacity to attenuate the surface runoff and the flooded river level. The hydrobrake flow control fitted to the tanks will be in line with the GDSDS requirements. A non-return valve will be fitted to the outlet to reduce any surcharge from outside the proposed development.

4.1.2.2 Sub-Catchment 2: Blocks B, C, D, E – Centre

The largest of the three sub-catchment areas will incorporate various SuDS and landscape elements to reduce the storm event runoff where possible. The existing church and library buildings will form part of the drainage strategy and the discharge will be limited to be in accordance with GDSDS requirements.

4.1.2.3 Sub-Catchment 3: Block C2 – South

The smallest of the three catchments will consist of a singular residential building with an attenuation tank, limiting any discharge. The existing entrance road and tree lane will be kept and no changes are proposed to the existing drainage strategy for the road in that area.

4.1.3 Estimation of greenfield runoff rate

In accordance with the IH124 method, the greenfield runoff for existing undeveloped sites measuring less than 50ha can be estimated using the following formula: Qbar rural (in m³/s) = $0.00108 \times (0.01 \times AREA) 0.89 \times SAAR1.17 \times SPR2.17$

where:

- Qbar rural is the mean annual flood flow from a catchment
- AREA is the area of the catchment in ha.
- SAAR is the standard average annual rainfall for the period 1981-2010 Annual Average Rainfall Grid produced by Met Éireann.
- SPR is Standard Percentage Runoff coefficient for the SOIL category.

Rainfall data for the site was sourced from an Annual Average Rainfall (AAR) Grid (1981-2010) produced by Met Éireann (Available from: http://www.met.ie/climate/products03.asp). The rainfall data for the Irish Grid Coordinates closest to the site indicates a SAAR value of 721mm is appropriate. Irish Grids reference for this site area: 316388 (Easting) and 236473 (Northing).

Easting	Northing	Annual Average Rainfall (mm)
316000	233000	721
316000	234000	716
316000	235000	717
316000	236000	721
316000	237000	733
316000	238000	755
316000	239000	770

Table 4.2.3: Met Éireann Annual Average Rainfall (AAR) Grid (1981-2010) Extract

Therefore, Qbar_{rural} for a 50ha site has been calculated as follows:

Qbar_{rural} (for a50ha site) = $0.00108 \times (0.01 \times 50)^{0.89} \times 721^{1.17} \times 0.40^{2.17}$

Qbar_{rural} (for a 50ha site) = $0.227385 \text{ m}^3/\text{s}$

= 227.385 l/s

Interpolating linearly, this corresponds with a Qbar figure for the overall site (8.008ha) of 28.2 l/s. In accordance with GDSDS guidelines, a conservative value of 2l/s per hectare will be used.

Sub-Catchment 1 (2ha) = 4.0 l/s

Sub-Catchment 2 (5.75ha) = 11.5 l/s

Sub-Catchment 3 (smaller than 1ha) = 2.0 l/s

4.1.4 Flow Network Model input

In addition to the SAAR value given above, the Causeway Flow software requires inputs to accurately model the design rainfall events for the site. The following process is used to obtain the data;

- A request was submitted to Met Eireann for the Rainfall Return Period table relating to the Irish Grid Coordinates of the subject site.
- The value in the table that corresponded with 5 year return period and 60 minute storm duration was taken as the M5-60, which is 16.1 for the subject site.
- The value in the table that corresponded with 5 year return period and 2 day storm duration was taken as the M5-2D, which is 57.9 for the subject site.
- Dividing M5-60 by M5-2D, the Ratio-R was calculated as 0.278

4.2 PROPOSED SURFACE WATER MANAGEMENT PLAN

The proposed Surface Water Management Plan is in line with the key requirements of the Dublin City Council Drainage Division Planning & Development Control Section. The proposed surface water drainage system takes cognisance of the Dublin City Development Plan 2016 – 2022 with respect to SuDS Section 9.5.4. The proposed SuDS measures provide a minimum of two stage treatment train approach including interception and primary and secondary treatment of surface water run-off. This treatment approach is in line with The CIRIA SuDS Manual C753 and is outlined below.

The measures to be incorporated into the development and will include intensive and extensive green roofs, permeable paving, tree pits, gravel filter drains, rain gardens and shallow infiltration systems.

A Phasing Plan for the development (Refer to BMCE drawing CLA-BMD-00-ZZ-DR-C-3007) is provided showing the extent of development within each proposed phase. It should be noted that as part of the Phase 1 of the development, the Applicant commits to providing the requisite main surface water infrastructure needed to facilitate the adequate treatment of all surface water runoff from this Phase 1 of the development. By nature of the surface water strategy design for the overall development, some of this Phase 1 infrastructure contributes to the SuDS treatment train for subsequent phases. This, along with the phase-specific SuDS measures in each Phase of development, ensures that the full SuDS treatment train is implemented for each phase prior to any discharge entering the River Tolka to the north.

4.2.1 Proposed Surface Water Treatment Train

The proposed surface water system uses a number of SuDS components in series to provide a minimum of two-stage treatment prior to discharge into the receiving systems. A SuDs Management Train for the Development has been prepared – refer to Figure 4.3.1 The SuDS Management Train describes how rainfall falling on each surface is managed and treated prior discharge and clearly demonstrates a robust train of treatment, which in most cases exceeds the minimum two-stage requirement.

Rainfall run-off will be intercepted and treated at roof levels using intensive/extensive green roof where feasible. A multidisciplinary coordinated approach has been taken with regard to assigning the appropriate areas of roof level as intensive green roof, in an effort to accommodate other elements such as plant and photovoltaic panels. Furthermore, all podium areas (both hard and soft landscaping) over basement will be finished using an intensive green roof drainage board above the waterproofing, to ensure greater interception of rainwater and treatment through the substrate prior to entering the pipework system.

Owing to constraints on the site arising from the desire to retain existing mature trees and protection of these tree root zones (refer to constraints plan layout CLA-BMD-00-ZZ-DR-C-1010) pavement run-off will be intercepted and treated using a variety of SuDS components including gravel filter drains, permeable paving and rain gardens, which have been strategically selected and positioned where space permits.

The drainage of hardstanding has been re-examined and amended where feasible. The majority of pedestrianised areas and footpaths are proposed to be permeable paving or will be constructed such that the impermeable paths drain to a gravel trenches adjacent to the path, allowing for full interception and full infiltration of rainwater back to source.

Vehicular carriageways have proved challenging in terms of accommodating SuDS measures, given the existing tree constraints, but the design has now been amended to incorporate a far more robust approach to treatment of run-off from carriageways, ensure the risk of pollutants entering the Tolka River has been minimised significantly. Roads for the most part will either discharge to gravel filter drains along the verges, tree pits, or raingardens. Where adjacent to existing tree root protection zones, the run-off will discharge to trapped road gullies with sumps. Pipework from these will discharge into catchpit (silt trap) manholes followed by proprietary treatment systems such as Hydro International 'Downstream Defender' and bypass petrol interceptors which will remove any final silts and oils to discharge into the River Tolka.

Figure 4.3.1 Surface Water Management Train

4.2.2 Proposed Surface Water Treatment SuDS Measures

Green Roofs

The proposed green roofs will consist of sedum roofing on maintenance only roofs, and intensive green roofing on rooftop amenity spaces. The proposed green roof coverage is summarised in Figure 4.3.2 below.

ROOF TYPE / BLOCK NO.	A1.1	A1.2	A2	A3	A4.1	A4.2	A4.3	B1	B2	B3	C1	C2	D1	D2	E2	E1	сн	L	
INTENSIVE GREEN	1349	1416	460	476	306	407	180	510	609	375	1060	486	502	1380	520	0	0	0	
EXTENSIVE GREEN	0	0	0	0	0	0	0	0	0	0	0	0	155	0	0	0	0	0	
STANDARD ROOF	632	64	249	234	299		192	670	867	598	564	538	57	1359	172	998	752	474	
TOTAL	1981	1480	709	710	605	407	372	1180	1476	973	1624	1024	714	2739	692	998	752	474	
% of GREEN ROOF COVERAGE ACHIEVED	68	96	65	67	51	100	48	43	41	38	65	47	92	50	75	0	0	0	
ROOF TYPE / BLOCK NO.	A1.1	A1.2	AZ	A3	A4.1	A4.2	A4.3	B1	B2	B3	C1	C2	D1	D2	E2	E1	сн	L	CENTRAL BASEMENT
PODIUM AREAS (INTENSIVE GREEN ROOF)	15	45	÷	-	-	÷		-	-	-	-	-	-	1198	-		÷	-	3141

Figure 4.3.2 Green Roof Areas

The proposed green roofs will cover approx. 62% average cross new roof areas. The limitations in providing full green roof coverage is due to plant enclosures. The green roof will provide interception of rainfall, filtration through the medium, and storage within the voids facilitating evapotranspiration.

The green roofs will intercept and absorb the first 5 – 10mm of rainfall, thereby reducing the volume of run-off into the receiving systems. Rainfall run-off that is not absorbed by the green roof will filtrate through the substrate and geotextile filter fabric. A limited attenuation volume will be provided by the green roof crate layer system below the geotextile filter fabric, which will provide a time delay between the rainfall event and discharge into the system thereby reducing peak discharge rates. According to the leading green roof supplier/manufacturer Bauder, up to 40% of average annual rainfall can be absorbed and released back into the atmosphere by transpiration and evaporation.

Therefore, rainfall run-off from roof areas covered by the proposed green roofs will go through a two-stage treatment train including interception and primary treatment in line with SuDS Manual C753 Table 26.7.

Filter Drains

The proposed filter drains will be linear excavations filled with suitable granular material with a minimum void porosity of 30% and wrapped in a geotextile filter membrane. The filter drains will intercept pavement run-off at ground level. Catchpits will be provided downstream of the filter drains to offer additional surface water treatment including retention.

The proposed filter drains will provide interception and reduce peak run-off rates prior to discharge into the surface water drainage system. The granular material and geotextile filter material will provide interception and act as a secondary treatment in preventing ingress of fine material from paved areas prior to discharge into surface water drainage system.

Therefore, rainfall run-off that will discharge into the filter drains / catchpits will go through a threestage treatment train including interception, primary and secondary treatment in line with SuDS Manual C753 Table 26.7

Permeable Pavements

The proposed permeable pavement will be located at parking bays throughout the development. The proposed permeable paving structures will be filled with suitable granular material with a minimum void porosity of 30% and wrapped in a geotextile filter membrane. The granular material will provide interception within the voids and by raising the invert of the outlet pipe to 150mm above the base. The geotextile filter material can offer secondary treatment of rainfall runoff by preventing ingress of fine material from paved areas through filtration prior to discharge into surface water drainage system.

Therefore, rainfall run-off from localised access road will go through a two-stage treatment train including interception and primary treatment in line with SuDS Manual C753 Table 26.7.

Rain Garden and Tree Pits

There are 2 areas of proposed rain garden, located to the southeast corner of Block C1 and to the northeast corner of Block A4. These will intercept and treat pavement run-off from the adjacent access roads and roof areas. The proposed rain-gardens will allow surface water run-off to pond temporarily before filtering through vegetation and underlaying soil before discharge into the system and therefore will serve as a bio-retention system providing interception as the water discharges through plants, shrubs and landscape medium. The planters will provide temporary retention for the 1 in 1 year event in the shallow depressions. Sand based material will be used to filter the water passing through. Further filtration will be provided by the geotextile filter membrane prior to discharge into the surface water system.

Therefore, rainfall run-off from the adjacent access roads. will go through a three-stage treatment train including interception, primary and secondary treatment in line with SuDS Manual C753 Table 26.7

Proprietary Surface Water Treatment Systems

Due to existing site constraints including mature trees adjacent to existing roads, the construction of many forms of sustainable drainage systems is not easily achievable. At suitable locations, a break will be introduced in the proposed kerbs to allow run-off to infiltrate to ground and into tree pits. Where this option is not available, it is the design intent to install proprietary surface water treatment systems prior to discharge into the river. The surface water treatment systems include catchpits, oil separators and sediments remover such as a 'Downstream Defender' or similar.

4.2.3 <u>The Greater Dublin Strategic Drainage Study</u>

The Greater Dublin Strategic Drainage Study (GDSDS) addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanisation, by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing the increase in both rate and volume of run-off, as well as ensuring the environment is protected from any pollution from roads and buildings. These drainage design criteria are as set out in Table 4.3.3.a:

GDSDS Criteria		Aims
Criterion 1	River Water Quality	To prevent pollution
	Protection	To maintain base flows in streams
		To recharge groundwater
Criterion 2	River Regime	To prevent river scour due to flash
	Protection	flooding
Criterion 3	Flood Risk Assessment	• To prevent site flooding for the 30yr
		storm and manage overland flows if site
		flooding occurs for the 100yr storm
Criterion 4	River Flood Protection	To prevent river flooding

Table 4.3.3.a GDSDS Drainage Criteria

The overarching principle of SuDS design is that surface water runoff should be managed for maximum benefit. The types of benefits that can be achieved by SuDS will be dependent on the site, but fit broadly into four categories – The Four Pillars of SuDS – as described in the CIRIA SuDS Manual C753 and set out in Table 4.3.3.b;

Table 4.3.3.b The Four Pillars of SuDS

SuDS Category	Benefit
Water Quantity	 Maintain and protect the natural water cycle
	 Support the management of flood risk
Water Quality	 Manage the quality of run-off to prevent pollution
Biodiversity	 To create and sustain better places for nature
Amenity	To create and sustain better places for people

Compliance with four GDSDS criteria and the four pillars of SuDS as described in the CIRIA SuDS Manual C753, requires a robust strategy that employs at source and site wide SuDS control measures. The SuDS strategy for the development has been developed in conjunction with the Landscape Architects, and strives to achieves the aims and benefits outlined above, despite being somewhat restricted by the available green space, and in particular the necessity to retain existing mature trees on the subject site.

4.2.3.1 Criterion 1 GDSDS – River Water Quality Protection

Run-off from natural greenfield areas contributes very little pollution and sediment to rivers and for most rainfall events direct run-off from greenfield sites to rivers does not take place as rainfall percolates into the ground. By contrast, urban run-off, when drained by pipe systems, results in run-off from virtually every rainfall event with high levels of pollution, particularly in the first phase of run-off, with little rainfall percolating to the ground. To prevent this happening, Criterion 1 requires that interception storage and/or treatment storage is provided, thereby replicating the run-off characteristics of the pre-development greenfield site.

In the context of the proposed development, it is proposed that all surface water run-off will go through a two stage treatment train via green roofs, permeable paving, filter drains and rain garden before discharging at a controlled rate into the receiving systems.

4.2.4 Interception Storage

The GDSDS requires that Interception storage, where provided, should ensure that at a minimum the first 5mm and preferably the first 10mm of rainfall is intercepted on site and does not directly pass to the receiving watercourse.

Interception storage can be attained using SuDS features which allow the rainwater to infiltrate into the ground, evaporate into the atmosphere or transpire through vegetation. Soft landscaping and planted areas are conservatively taken as providing natural interception storage of 15mm.

Interception storage volumes for each Sub-catchment areas shown below

4.2.4.1 Interception Storage - Catchment 1

Interception storage required m³ = Total drained area (m²) x minimum rainfall (mm)

Type of areas	Areas (m²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	6091	15	91.41
Intensive Podium	1545	12	18.54
Green Roof	4414	12	52.97
Permeable Paving	1828	40	73.12
Impermeable Paving	1847	0	0.0
Standard Roof (impermeable)	1670	0	0.0
Total	-	-	236.04

Interception storage required = 23,259m² x 10mm = 232.59m³

Table 4-1 – Interception Storage Catchment 1

The proposed Interception storage meets the preferred 10mm storage criteria

4.2.4.2 Interception Storage - Catchment 2

Interception storage required m³ = Total area (m²) x minimum rainfall (mm)

Interception storage required = 51,831m² x 10mm = 518.31m³

Type of areas	Areas (m ²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	13823	15	207.34
Intensive Podium	1198	12	14.38
Green Roof	4382	12	52.58
Permeable Paving	6140	40	245.6
Impermeable Paving	3415	0	0.0
Standard Roof (impermeable)	6511	0	0.0
Total	-	-	519.90

 Table 4-2 – Interception Storage Catchment 2

The proposed Interception storage meets the preferred 10mm storage criteria.

4.2.4.3 Interception Storage - Catchment 3

Interception storage required m³ = Total area (m²) x minimum rainfall (mm)

Interception storage required = $4,213m^2 \times 10mm = 42.13m^3$

Type of areas	Areas (m ²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	1176	15	17.64
Green Roof	486	12	5.83
Permeable Paving	580	40	23.2
Impermeable Paving	539	0	0.0
Standard Roof (impermeable)	538	0	0.0
Total	-	-	46.67

Table 4-5 – Interception Storage Catchment 3

The proposed Interception storage meets the preferred 10mm storage criteria.

4.2.4.4 Treatment Storage

In accordance with the GDSDS, interception storage & treatment storage are interchangeable. Since full interception storage has been provided, treatment storage is not required.

4.2.5 <u>Criterion 2 GDSDS – River Regime Protection</u>

Regardless of the rainfall event, unchecked run-off from a developed site through traditional pipe networks will discharge into receiving waters at rates that are an order of magnitude greater than that prior to development. This can cause flash flow in the outfall river / stream that can cause scour and erosion. Attenuation storage is provided to prevent this occurring by limiting the rate of run-off to that which took place from the pre-development greenfield site.

In the context of the subject site, peak run -off discharge from the proposed development will be restricted to a peak rate of 15.5 l/s into the River Tolka in line with GDSDS requirement of 2.0 l/s/ha. Attenuation facilities will be provided throughout the site for storm events up to and including the 1 in 100 year plus 20% for climate change.

Therefore, GDSDS Criterion 2 is complied with.

4.2.6 Criterion 3 GDSDS – Level of Service For the Site

The GDSDS requires that no flooding should occur on site for storms up to and including the 1 in 30 year event. The pipe network and the attenuation storage volumes should, therefore, be checked for such storms to ensure that no site flooding occurs although partial surcharging of the system is allowed as long as it does not threaten to flood.

For the 1 in 100 year event, the pipe network can fully surcharge and cause site flooding, but the top water level due to any such flooding must be at least 500mm below any vulnerable internal floor levels, and the flood waters should be contained within the site. In addition, the top water level in any attenuation device during the 100 year storm must be at least 500mm below any vulnerable internal floor levels.

Refer to Appendix 3 for Causeway Flow simulations demonstrating a level of service as described above and ensures no surface water flooding for storms up to and including the 1 in 100 year with 20% extra for climate change. Therefore, GDSDS Criterion 3 is complied with.

4.2.7 Criterion 4 GDSDS – River Flood Protection

Criterion 4 is intended to prevent flooding of the receiving system / watercourse by either limiting the volume of run-off to the pre-development greenfield volume using 'long-term storage' (Option 1) or by limiting the rate of run-off for the 1 in 100 year storm to QBAR or 2.0l/s/ha without applying growth factors using 'extended attenuation storage' (Option 2).

Option 2 is complied with as the proposed development will limit discharge rate to 15.5 l/s in line with GDSDS requirement of 2.0 l/s/ha.

4.3 SUMMARY OF SUDS MEASURES

The proposed Surface Water Management Plan for the development is in line with the key requirements of the Dublin City Drainage Division and the Dublin City Development Plan 2016-2022 with respect to Sustainable Drainage Systems.

Rainfall run-off from the proposed site development will go through at least a two-stage treatment train prior to discharge into the River Tolka. The proposed SuDS measures will reduce the quantity and improve the quality of water discharging into the receiving system.

4.4 CONSTRUCTION SURFACE WATER MANAGEMENT PLAN

DCC Drainage Division requested details of protections to the river from any site runoff or other forms of possible pollution from site activities during construction. In response, please refer to the separate document 19.253-RP-05 – Outline CSWMP.

5.0 FOUL DRAINAGE SYSTEM

5.1 PROPOSED FOUL DRAINAGE SYSTEM

There is an existing 375mm Foul Network Sewer on Clonliffe Road. There is an existing 675mm Foul Network Sewer which crosses the site at the northern corner heading in a south western direction.

Refer to Appendix 5 for existing drainage records & drawing set no. C1008 for additional information.

5.2 PROPOSED FOUL DRAINAGE SYSTEM

The proposed foul drainage system will be designed to take discharges from the new residential units. Drainage from kitchen/canteen facilities will discharge through a grease separator designed in accordance with IS EN 1825 Part 1 and Part 2 and / or to Irish Water requirements. The foul system will connect to the Irish Water network at three locations including two connection points into the existing 675mm combined sewer below the future Sports Grounds and a third connection on Clonliffe Road. Refer to BMCE drawings CLA-BMD-00-ZZ-DR-C-1008 – Sheets S1-S8 for layout of the proposed foul drainage.

It is calculated that the proposed development will have a total hydraulic loading of 719m³ per day of foul effluent generated during the operational phase of the development. This equates to an average flow of 8.32 litres/second (over a 24-hour period) and a peak flow of 24.96 litres/second. A breakdown of the foul loading calculations is included in Appendix 1

A Pre-connection Enquiry application was submitted to Irish Water to confirm capacity in the receiving network and a confirmation of feasibility was obtained. See Appendix 6 for a copy of the Irish Water Confirmation of Feasibility letter and see Appendix 7 for a copy of the Statement of Design Acceptance.

5.2.1 Residential Flow – 1614 no. units

Dry Weather Flow (Daily)	= (Population)(Consumption/Capita) + (Infiltration)
Number of Residential Units	= 1614
Population Estimate	= 1614 x 2.7 = 4358 persons
Consumption/Capita	= 150 litres / person / day
Infiltration	= 10% (as per App C Section 1.2.4 of CoP for WW Infrastructure)
Average Flow (DWF)	= (1614 x 2.7 x 150 x 1.1) = 719,037 litres / day
	= 8.32 litres/second
Peak Flow	= (Average Flow) × (3) = 8.32 x 3
	= 24.96 litres/second

5.2.2 Foul Network Design

The proposed pipe network has been designed in accordance with the relevant requirements of the Irish Water Code of Practice for Wastewater Infrastructure.

The proposed foul drainage network comprises of a series of 225mm diameter pipes, designed for a minimum velocity of 0.75m/s (self-cleansing) and maximum velocity of 3.0m/s. A pipe friction coefficient of 1.5mm has been assumed.

Each residential block is serviced by 150mm diameter (SN8 uPVC) branch connections in accordance with the Irish Water Code of Practice for Wastewater Infrastructure. It is noted the proposed foul outfall pipe is 225mm diameter pipe at 1:100 minimum fall which has a capacity of approximately 47 I/s and is deemed adequate for the peak foul flows anticipated.

Refer to BMCE drawings CLA-BMD-00-ZZ-DR-C-1008 – Sheets S1-S8 for layout of the proposed foul drainage.

6.0 WATER SUPPLY

6.1 EXISTING WATERMAIN INFRASTRUCTURE

There are numerous Irish Water watermains in the vicinity of the site including:

- A 100mm, 150mm and 800mm diameter watermains, to the south of the proposed development, on Clonliffe Road.
- A 150mm watermain on Holy Cross Avenue, to the south west of the proposed development.
- A 600mm and a 225mm watermain on Drumcondra Road Lower, to the north west of the proposed development.

Refer to Appendix 5 for details of the IW / DCC drainage and watermain records for the area.

In addition, there is a network of existing on-site watermains serving the various existing buildings across the Holy Cross lands. Refer to drawing CLA-BMD-00-ZZ-DR-C-1001 Sheets 1-4 for details of the existing on site watermain layout. Such is the scale of the proposed development across the site (including the demolition of several buildings), virtually all of the existing watermains will be decommissioned and grubbed up.

6.2 PROPOSED WATERMAINS

The proposed water supply connection to the new development will be from the existing 600mm public main on Drumcondra Road Lower with a cross-connection to the existing 225mm public main on Drumcondra Road Lower, as directed by Irish Water.

In addition, it is proposed that the development will be serviced by a second connection to the 800mm diameter public main on Clonliffe Road.

The proposed watermain system through the site will be 250mm diameter. Refer to drawings CLA-BMD-00-ZZ-DR-C-1009 Sheets 1-8 for the layout of the proposed watermains.

All of the new apartment blocks will be sprinklered, with 5 sprinkler tanks located as follows – Block A1 basement, Existing Block E1 lower ground, new central basement, Block D1 ground floor and Block D2 basement.

It is the M&E Engineers proposal that not every block will have its own water break tank and pumped system. Certain of the blocks will be fed from the tanks/pumped systems in other blocks. Refer to Appendix 9 for schematic drawings from OCSC M&E (ref CLN-OSC-ZZ-ZZ-DR-ME-0001 and CLN-OSC-ZZ-ZZ-DR-ME-0002) which indicates the location and layout of tanks and how each block is fed.

We expect the peak flow demand during the operational phase of the development to be in the region of 47.3 litres/second, equivalent to an average daily demand of 818 m³. The installation of low flow fittings and a rainwater harvesting system for the development will reduce the demand on the existing water supply network.

A Pre-connection Enquiry application was submitted to Irish Water to confirm capacity in the network and a confirmation of feasibility was obtained. See Appendix 6 for a copy of the Irish Water Confirmation of the Feasibility letter and see Appendix 7 for a copy of the Statement of Design Acceptance

6.2.1 <u>Residential Demand – 1614 no. units</u>

Average Daily Demand	= (Population)(Consumption/Capita)
Number of Residential Units	= 1614
Population Estimate	= 1614 x 2.7 = 4358 persons
Consumption/Capita	= 150 litres / person / day
Average Daily Demand	= 4358 x 150
	= 653,670 litres/day
Average Day/Peak Week Demand	= (Average Daily Demand) x 1.25
	= 817,088 litres/day
	= 9.45 litres/second
Peak Demand	= (Average Day/Peak Week Demand) x 5
	= 47.28 litres/second

6.2.2 Watermain Design

All proposed water ring mains will be HDPE 250 SDR17 in accordance with Irish Water Standards. Individual houses will have their own connections (25mm O.D. PE pipe MDPE 80 SDR11) to distribution water mains via service connections and meter / boundary boxes. Individual connections are to be installed in accordance with Irish Water Standard Details.

The proposed water main layout is arranged such that all buildings are a maximum of 46m from a hydrant in accordance with the Department of the Environment's Building Regulations "Technical Guidance Document Part B Fire Safety". Hydrants are to be installed in accordance with Irish Water's Code of Practice and Standard Details. Final positions of hydrants will be agreed as part of the Fire Safety Certificate requirements.

Sluice valves are provided at appropriate locations to facilitate isolation and purging of the system.

Individual houses will accommodate minimum 24-hour water storage (in accordance with the requirements of Irish Water's Code of Practice) and include provision of water conservation measures such as dual flush water cisterns and low flow taps.

7.0 TRAFFIC ENGINEERING

Separate reports and drawings outlining the traffic assessment, roads access, internal road network and mobility management matters have been prepared by Systra and are submitted with this planning application.

8.0 FLOOD RISK ASSESSMENT

Refer to the BMCE Site Specific Flood Risk Assessment submitted as part of this planning application, which relates specifically to the proposed residential development.

Refer also to the BMCE Masterplan Area Flood Risk Assessment submitted as part of this application, which relates specifically to the GAA owned balance of the Masterplan lands.

Appendix 1

Foul Load Calculations

Dublin | London | Sofia Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland

 Phone
 +353 1 6773200

 Email
 bmce@bmce.ie

www.bmce.ie

Foul Loading & Water Demand Calculations

Date:29 April 2021Subject:Clonliffe Lands, Clonliffe Road, D3
Masterplan Drainage & Water Supply

1. Proposed Discharge to Clonliffe Road Outfall (375mm Foul Sewer)

The proposed foul system collects foul discharges from Block C2 via a 150mm drain before discharging into the 375mm Irish Water combined sewer on Clonliffe Road. Refer to BMCE drawing CLA-BMD-00-ZZ-DR-C-1002 in Appendix I.

The foul effluent from the proposed Block C2 is calculated as per the Irish Water Code of Practice for Wastewater Infrastructure (April 2021) assuming dry weather flow of 150 l/head/day and using the Irish Water assumed average occupancy of 2.7 persons/unit. See Table 1.1 for foul discharge rates.

	Proposed Discharge to Clonliffe Road Outfall (375mm Foul Sewer)												
			Number of	Total	Infiltration	Flow Rates for			Peak Flow				
			Persons per	Number of	10% as per	Design (Litres /	Average Daily Flow		Rates (Litres /				
Location	Category	Number of Units	Units	Persons	CoP	Persons / Day)	Rates (m ³ / Day)	Peaking Factor	Seconds)				
Block C2	Residential	96	2.7	259	10%	150	42.8	6	2.70				

 Table 1.1 Discharge Rates to Clonliffe Road Sewers

Dublin | London | Sofia Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland Phone +353 1 6773200

Email bmce@bmce.ie

2. Proposed Discharge to Sports Grounds Outfalls (675mm Foul Sewer)

The proposed foul system collects foul discharges from the rest of the proposed masterplan before discharging into the 675mm Irish Water combined sewer under the Future Sports Grounds. Refer to BMCE drawing CLA-BMD-00-ZZ-DR-C-1002 in Appendix I.

The foul effluent from the proposed development is calculated as per the Irish Water Code of Practice for Wastewater Infrastructure (April 2021) assuming dry weather flow of 150 l/head/day and using the Irish Water assumed average occupancy of 2.7 persons/unit. See **Error! Reference source not found.** for foul discharge rates.

	Proposed Discharge to Sports Grounds Outfalls (675mm Foul Sewer)													
								Peaking Factor						
			Number of	Total	Infiltration	Flow Rates for		per IW COP	Peak Flow					
			Persons per	Number of	10% as per	Design (Litres /	Average Daily Flow	appendix B	Rates (Litres /					
Location	Category	Number of Units	Units	Persons	CoP	Persons / Day)	Rates (m ³ / Day)	table 2.5	Seconds)					
Block C1	Residential	146	2.7	394	10%	150	65.0							
Block D2	Residential	239	2.7	645	10%	150	106.5							
Block B1	Residential	92	2.7	248	10%	150	41.0							
Block B2	Residential	137	2.7	370	10%	150	61.0							
Block D1	Residential	151	2.7	408	10%	150	67.3							
Block B3	Residential	80	2.7	216	10%	150	35.6							
Block E1	Residential	56	2.7	151	10%	150	24.9							
Block E2	Residential	48	2.7	130	10%	150	21.4							
Blocks A1.1 & A1.2	Residential	305	2.7	824	10%	150	135.9							
Block A2	Residential	73	2.7	197	10%	150	32.5							
Block A3	Residential	87	2.7	235	10%	150	38.8							
Blocks														
A4.1_A4.2&A4.3	Residential	104	2.7	281	10%	150	46.3							
Total		1518		4099			676.3	3	23.48					

Table 2.1 Discharge Rates to Sports Grounds Outfalls

 Dublin | London | Sofia

 Sandwith House,

 52-54 Lower Sandwith Street,

 Dublin 2, D02 WR26, Ireland

 Phone +353 1 6773200

 Email bmce@bmce.ie

 www.bmce.ie

The water demand for the proposed development has been calculated using the guidelines given in the Irish Water Code of Practice for Water Infrastructure (April 2021) Section 3.7.2 assuming a per-capita consumption of 150 l/head/day and using the Irish Water assumed average occupancy of 2.7 persons/unit. The average day/peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand factor is taken as 5 times the average day/peak week demand. See Table 3.1 for foul discharge rates.

Table 3.1 Master	plan Water	Demand Rates
------------------	------------	--------------

	Proposed Water Demand												
					Flow Rates								
					for Design								
			Number of	Total	(Litres /				Peak Water				
			Persons per	Number of	Persons /	Average Day	Average Day Water	Peak Demand	Demand Rates				
Location	Category	Number of Units	Units	Persons	Day)	Peak Factor	Demand (m ³ /Day)	Factor	(Litres/Seconds)				
Site Wide	Residential	1614	2.7	4358	150	1.25	817.1	5.00	47.29				

Appendix 2

Green Roof Areas

Proposed SuDS Green Roof Coverage

ROOF TYPE / BLOCK NO.	A1.1	A1.2	A2	A3	A4.1	A4.2	A4.3	B1	B2	B3	C1	C2	D1	D2	E2	E1	сн	L
INTENSIVE GREEN	1349	1416	460	476	306	407	180	510	609	375	1060	486	502	1380	520	0	0	0
EXTENSIVE GREEN	0	0	0	0	0	0	0	0	0	0	0	0	155	0	0	0	0	0
STANDARD ROOF	632	64	249	234	299	-	192	670	867	598	564	538	57	1359	172	998	752	474
TOTAL	1981	1480	709	710	605	407	372	1180	1476	973	1624	1024	714	2739	692	998	752	474
% of GREEN ROOF COVERAGE ACHIEVED	68	96	65	67	51	100	48	43	41	38	65	47	92	50	75	0	0	0

ROOF TYPE / BLOCK NO.	A1.1	A1.2	A2	A3	A4.1	A4.2	A4.3	B1	B2	B3	C1	C2	D1	D2	E2	E1	СН	L	CENTRAL BASEMENT
PODIUM AREAS (INTENSIVE GREEN ROOF)	15	545	-	-	-	-	-	-	-	-	-	-	-	1198	-	-	-	-	3141

Figure 2 - Green Roof Areas

Appendix 3

Causeway Flow Simulations

	Barrett Mah	ony Consultir	ng File	: Clonliffe Netv	vork 2021-05	Page 1					
	Engineers Lt	d.	Net	work: Catchme	ent 1	19.253					
	52-54 Lowe	⁻ Sandwith St	reet Dirl	k Kotze		Holy Cross Lands					
	Dublin 02		31/	05/2021		Clonliffe					
				-							
		<u>C</u>	Design Settii	<u>ngs</u>							
Rainfall Methodolo	gy FSR		Maxim	um Time of Co	ncentration (n	nins) 30.00					
Return Period (yea	rs) 5			Maximur	n Rainfall (mm	ı/hr) 50.0					
Additional Flow (%) 0			Minin	num Velocity (m/s) 1.00					
FSR Regi	on Scotland	and Ireland			Connection ⁻	Type Level Soffits					
M5-60 (m	m) 16.100			Minimum Ba	ackdrop Height	: (m) 0.200					
Ratic	-R 0.278			Preferred Cover Depth (m) 1.200							
	ound √										
Time of Entry (mins)4.00Enforce best practice design rules											
			<u>Nodes</u>								
Name	Area T of	E Cover	Diameter	Easting	Northing	Depth					
	(ha) (min	s) Level	(mm)	(m)	(m)	(m)					
		(m)									
S17.0	0.019 4.0	12.585	1200	716151.426	736461.606	1.985					
S17.1	0.027 4.0	10.000	1200	716187.842	736452.048	1.450					
\$17.2	0.010 4.0	9.660	1200	716191.413	736465.459	1.560					
S17.3	0.101 4.0	8.300	1200	716198.775	736493.106	1.700					
S17.4	0.023 4.0	7.689	1200	716206.014	736520.294	1.889					
S18.0	0.023 4.0	7.850	1200	716153.249	736587.139	1.050					
S18.1	0.011 4.0	7.560	1200	716160.318	736573.205	1.411					
S18.2	S18.2 0.022 4.00 7.560			716193.811	736566.026	1.631					
S17.5	0.545 4.0	7.500	1200	716216.604	736560.063	1.840					
S17.6		7.675	1200	716250.172	736553.652	3.075					

S17.6			7.675	1200	716250.172	736553.652	3.075
S16.0	0.147	4.00	7.985	1200	716258.000	736584.587	3.535
S16.2			7.650	1200	716259.191	736583.684	3.250
S16.3			5.355	1200	716338.674	736570.908	1.530
DSD1			5.295	1200	716340.332	736577.233	1.770

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1	S17.0	S17.1	37.639	0.600	10.600	8.554	2.046	18.4	225	4.20	50.0
1.001	S17.1	S17.2	12.533	0.600	8.550	8.101	0.449	27.9	225	4.29	50.0
1.002	S17.2	S17.3	27.879	0.600	8.100	6.833	1.267	22.0	225	4.45	50.0
1.003	S17.3	S17.4	27.535	0.600	6.600	5.800	0.800	34.4	225	4.66	50.0
1.004	S17.4	S17.5	40.555	0.600	5.800	5.661	0.139	291.8	300	5.40	50.0
2	S18.0	S18.1	15.418	0.600	6.800	6.149	0.651	23.7	150	4.12	50.0
2.001	S18.1	S18.2	34.254	0.600	6.149	5.929	0.220	155.7	225	4.67	50.0
2.002	S18.2	S17.5	23.353	0.600	5.929	5.660	0.269	86.8	225	4.95	50.0
1.005	S17.5	S17.6	11.171	0.600	5.660	5.599	0.061	183.1	375	5.54	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow
				(m)	(m)		(I/s)
1	3.064	121.8	3.4	1.760	1.221	0.019	0.0
1.001	2.486	98.9	8.3	1.225	1.334	0.046	0.0
1.002	2.801	111.4	10.1	1.335	1.242	0.056	0.0
1.003	2.238	89.0	28.4	1.475	1.664	0.157	0.0
1.004	0.915	64.7	32.5	1.589	1.539	0.180	0.0
2	2.077	36.7	4.2	0.900	1.261	0.023	0.0
2.001	1.045	41.6	6.1	1.186	1.406	0.034	0.0
2.002	1.404	55.8	10.1	1.406	1.615	0.056	0.0
1.005	1.335	147.5	141.1	1.465	1.701	0.781	0.0

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

Barrett Mahony Consulting File: Clonliffe Network 2021-05 Page 2 BARRETT **MAHONY** CONSULTING ENGINEERS CIVIL & STRUCTURAL Engineers Ltd. Network: Catchment 1 19.253 52-54 Lower Sandwith Street Dirk Kotze Holy Cross Lands Clonliffe Dublin 02 31/05/2021 Links Name US DS Length ks (mm) / US IL DS IL Fall Slope Dia T of C Rain Node Node (1:X) (mm/hr) (m) (m) (m) (m) (mm) (mins) n 1.007 S16.0 31.910 0.600 4.450 S17.6 4.600 0.150 212.7 375 5.97 50.0 1.008 S16.0 S16.2 2.180 0.600 4.450 4.400 0.050 43.6 375 5.98 50.0 1.009 S16.2 S16.3 79.158 0.600 4.400 3.825 0.575 137.7 225 7.17 50.0

3.525

0.300

225

7.19

17.3

50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)
1.007	1.238	136.8	141.1	2.700	3.160	0.781	0.0
1.008	2.750	303.7	167.7	3.160	2.875	0.928	0.0
1.009	1.112	44.2	167.7	3.025	1.305	0.928	0.0
1.01	3.161	125.7	167.7	1.305	1.545	0.928	0.0

3.825

0.600

5.193

S16.3 DSD1

1.01

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1	37.639	18.4	225	Circular	12.585	10.600	1.760	10.000	8.554	1.221
1.001	12.533	27.9	225	Circular	10.000	8.550	1.225	9.660	8.101	1.334
1.002	27.879	22.0	225	Circular	9.660	8.100	1.335	8.300	6.833	1.242
1.003	27.535	34.4	225	Circular	8.300	6.600	1.475	7.689	5.800	1.664
1.004	40.555	291.8	300	Circular	7.689	5.800	1.589	7.500	5.661	1.539
2	15.418	23.7	150	Circular	7.850	6.800	0.900	7.560	6.149	1.261
2.001	34.254	155.7	225	Circular	7.560	6.149	1.186	7.560	5.929	1.406
2.002	23.353	86.8	225	Circular	7.560	5.929	1.406	7.500	5.660	1.615
1.005	11.171	183.1	375	Circular	7.500	5.660	1.465	7.675	5.599	1.701
1.007	31.910	212.7	375	Circular	7.675	4.600	2.700	7.985	4.450	3.160
1.008	2.180	43.6	375	Circular	7.985	4.450	3.160	7.650	4.400	2.875
1.009	79.158	137.7	225	Circular	7.650	4.400	3.025	5.355	3.825	1.305
1.01	5.193	17.3	225	Circular	5.355	3.825	1.305	5.295	3.525	1.545

Link	US	Dia	Node	MH	1H DS		Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1	S17.0	1200	Manhole	Adoptable	S17.1	1200	Manhole	Adoptable
1.001	S17.1	1200	Manhole	Adoptable	S17.2	1200	Manhole	Adoptable
1.002	S17.2	1200	Manhole	Adoptable	S17.3	1200	Manhole	Adoptable
1.003	S17.3	1200	Manhole	Adoptable	S17.4	1200	Manhole	Adoptable
1.004	S17.4	1200	Manhole	Adoptable	S17.5	1200	Manhole	Adoptable
2	S18.0	1200	Manhole	Adoptable	S18.1	1200	Manhole	Adoptable
2.001	S18.1	1200	Manhole	Adoptable	S18.2	1200	Manhole	Adoptable
2.002	S18.2	1200	Manhole	Adoptable	S17.5	1200	Manhole	Adoptable
1.005	S17.5	1200	Manhole	Adoptable	S17.6	1200	Manhole	Adoptable
1.007	S17.6	1200	Manhole	Adoptable	S16.0	1200	Manhole	Adoptable
1.008	S16.0	1200	Manhole	Adoptable	S16.2	1200	Manhole	Adoptable
1.009	S16.2	1200	Manhole	Adoptable	S16.3	1200	Manhole	Adoptable
1.01	S16.3	1200	Manhole	Adoptable	DSD1	1200	Manhole	Adoptable

BM	BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL		Barrett Mahor Engineers Ltd. 52-54 Lower S Dublin 02	ny Consult andwith S	File: Clonliffe Network 2021-05 Network: Catchment 1 Dirk Kotze 31/05/2021				Page 3 19.253 Holy Cross Lands Clonliffe			
	Manhole Schedule											
	Node Easting (m)		Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	Connections Lin		IL (m)	Dia (mm)	
	S17.0	716151.426	736461.606	12.585	1.985	1200	\bigcirc					
	S17.1	716187.842	736452.048	10.000	1.450	1200	1	0	1	<u>10.600</u> 8.554	225 225	
	S17.2	716191.413	736465.459	9.660	1.560	1200	, and the second	0	1.001 1.001	8.550 8.101	225 225	
	S17.3	716198.775	736493.106	8.300	1.700	1200		0	1.002 1.002	8.100 6.833	225 225	
	S17.4	716206.014	736520.294	7.689	1.889	1200		0	1.003 1.003	6.600 5.800	225 225	
		746452.240	726507 420	7 050	4 050	1200		0	1.004	5.800	300	
	518.0	/16153.249	/36587.139	7.850	1.050	1200	\mathbb{Q}	0	2	6.800	150	
	S18.1	716160.318	736573.205	7.560	1.411	1200	1	1	2	6.149	150	
	S18.2	716193.811	736566.026	7.560	1.631	1200	1	0	2.001	6.149 5.929	225 225	
	S17.5	716216.604	736560.063	7.500	1.840	1200	1	0 1 2	2.002 2.002 1.004	5.929 5.660 5.661	225 225 300	
	S17.6	716250.172	736553.652	7.675	3.075	1200	2	0	1.005 1.005	5.660 5.599	375 375	
	S16.0	716258.000	736584.587	7.985	3.535	1200		0	1.007	4.600	375 375	
								0	1.008	4.450	375	
	S16.2	716259.191	736583.684	7.650	3.250	1200	1	1	1.008	4.400	375	
	S16.3	716338.674	736570.908	5.355	1.530	1200	1	0	1.009 1.009	4.400 3.825	225	
								0	1.01	3.825	225	
BM	BARRETT CONSULTING CIVIL & STI	G ENGINEERS RUCTURAL	Barrett Mahony Engineers Ltd. 52-54 Lower Sa	/ Consultin ndwith Str	g F N eet C	ile: Clor Network Dirk Kotz 21/05/20	iliffe Net : Catchn :e 121	twork 202 nent 1	21-05	Page 4 19.253 Holy Cros Clopliffe	s Lands	
----	--------------------------------------	---	--	---	--	--	--	--	--	--	-----------------	
			Dubiin 02			51/05/20)21			Clonine		
				<u>IVIa</u>	nnole Sc	nedule						
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conr	nections	Link	: IL (m)	Dia (mm)	
	DSD1	716340.33	32 736577.233	5.295	1.770	1200	\int_{1})	1 1.01	3.525	225	
				<u>Sim</u>	ulation S	<u>Settings</u>						
		Rainfall I Ai	Methodology F FSR Region S M5-60 (mm) 1 Ratio-R 0 Summer CV 1 nalysis Speed D	SR cotland an 6.100 0.278 .000 Detailed	d Ireland	A	Drain D dditiona Check I Check D	Skip Stead own Timo I Storage Discharge Discharge	dy State e (mins) (m³/ha) e Rate(s) Volume	x 240 20.0 x x		
				St	orm Dur	ations						
	1 3	5 60 0 120	180360240480) 600) 720	960 144) 2 0 2	160 880	4320 5760	7200 8640	1008	30	
		Re	eturn Period Cl	imate Cha	nge A	dditiona	l Area	Additio	nal Flow	ı		
			(years) 5	(CC %)	20	(A %) 0	(Q	%) ()		
			30		20		0		()		
			100		20		0		()		
			Nod	<u>e S16.2 Or</u>	nline Hyd	lro-Brak	e [®] Cont	<u>rol</u>				
	Replac	r ces Downst Invert Design Design	Flap Valve x ream Link \checkmark Level (m) 4.40 Depth (m) 1.20 Flow (l/s) 4.0	0 0 Mi Min	Su Pro n Outlet Node Di	Obj ump Ava oduct Nu Diamete iameter	ective ilable mber er (m) (mm)	(HE) Min ✓ CTL-SHE- 0.150 1200	iimise u -0092-4	pstream s 000-1200	torage -4000	
			Node	e S17.6 De	pth/Area	a Storag	e Struct	<u>ure</u>				
	Base Ir Side Ir	nf Coefficier nf Coefficier	nt (m/hr) 0.000 nt (m/hr) 0.000	00 Sa 00	fety Fact Poros	or 2.0 ity 0.9	5 T	ïme to ha	Invert L alf empt	evel (m) y (mins)	5.400	
		Depth // (m) 0.000 //	Area Inf Area (m ²) (m ²) 50.0 0.0	Depth (m) 1.350	Area (m²) 450.0	Inf A (m ²	rea 2) 0.0	Depth (m) 1.351	Area (m²) 0.0	Inf Area (m²) 0.0		
					<u>Rainfa</u>	<u>111</u>						
			5 year +20% (5 year +20% (5 year +20% (5 year +20% (5 year +20% (Event CC 15 minu CC 30 minu CC 60 minu CC 120 minu CC 120 minu	ite sumn ite sumn ite sumn nute sum nute sum	l ner ner ner mer imer	Peak ntensity mm/hr) 157.431 107.107 75.139 48.030 37.937	Avera Intens (mm/ 44.5 30.3 19.8 12.6 7 9.7	ge iity 548 508 557 593 762			
			5 year +20% (5 year +20% (CC 240 mir	iute sum	mer mer	30.619 24.099) 8.0) 6.2	92 201			

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 5
Engineers Ltd.	Network: Catchment 1	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
5 year +20% CC 480 minute summer	19.415	5.131
5 year +20% CC 600 minute summer	16.189	4.428
5 year +20% CC 720 minute summer	14.646	3.925
5 year +20% CC 960 minute summer	12.322	3.245
5 year +20% CC 1440 minute summer	9.253	2.480
5 year +20% CC 2160 minute summer	6.857	1.895
5 year +20% CC 2880 minute summer	5.841	1.565
5 year +20% CC 4320 minute summer	4.573	1.196
5 year +20% CC 5760 minute summer	3.858	0.988
5 year +20% CC 7200 minute summer	3.338	0.852
5 year +20% CC 8640 minute summer	2.957	0.754
5 year +20% CC 10080 minute summer	2.669	0.681
30 vear +20% CC 15 minute summer	230.533	65.233
30 year +20% CC 30 minute summer	158.330	44.802
30 year +20% CC 60 minute summer	110.655	29.243
30 year +20% CC 120 minute summer	70.393	18.603
30 year +20% CC 180 minute summer	55 084	14 175
30 year +20% CC 240 minute summer	44 150	11 667
30 year +20% CC 360 minute summer	34 380	8 847
30 year +20% CC 480 minute summer	27 479	7 262
30 year +20% CC 600 minute summer	27.475	6 2 2 7
30 year + 20% CC 720 minute summer	22.700	5 /01
$30 \text{ year } \pm 20\%$ CC 960 minute summer	17 002	1 501
20 year + 20% CC 1440 minute summer	17.095	2 4.501
$20 \text{ year } \pm 20\%$ CC 2160 minute summer	0.200	2 567
20 year + 20% CC 2100 minute summer	J.200 7 010	2.307
$20 \text{ year } \pm 20\% \text{ CC}$ 2000 minute summer	6 050	1 50/
30 year +20% CC +320 minute summar	0.059	1.304
30 year + 20% CC 3760 minute summer	5.001	1.290
30 year +20% CC 7200 minute summer	4.344	1.108
30 year +20% CC 8640 minute summer	3.823	0.975
30 year +20% CC 10080 minute summer	3.432	0.875
100 year +20% CC 15 minute summer	298.703	84.523
100 year +20% CC 30 minute summer	206.626	58.468
100 year +20% CC 60 minute summer	143.868	38.020
100 year +20% CC 120 minute summer	90.806	23.997
100 year +20% CC 180 minute summer	70.639	18.178
100 year +20% CC 240 minute summer	56.367	14.896
100 year +20% CC 360 minute summer	43.598	11.219
100 year +20% CC 480 minute summer	34.671	9.163
100 year +20% CC 600 minute summer	28.612	7.826
100 year +20% CC 720 minute summer	25.663	6.878
100 year +20% CC 960 minute summer	21.295	5.608
100 year +20% CC 1440 minute summer	15.685	4.204
100 year +20% CC 2160 minute summer	11.399	3.150
100 year +20% CC 2880 minute summer	9.570	2.565
100 year +20% CC 4320 minute summer	7.332	1.917
100 year +20% CC 5760 minute summer	6.086	1.558
		1 226
100 year +20% CC 7200 minute summer	5.198	1.520
100 year +20% CC 7200 minute summer 100 year +20% CC 8640 minute summer	5.198 4.555	1.320

N / BARRETT MAHONY	Barrett		nsulting	File: C	Jonine Jonine		21-05	Page o	
CONSULTING ENGINEERS	Engine	ers Lta.		Netw	ork: Cate	coment 1		19.253	a Lavada
■ ▼ ■ CIVIL & STRUCTURAL	52-54	Lower Sand	with Street		orze			HOIY Cros	s Lands
	Dublin	02		31/05	/2021			Clonliffe	
Desulta	6 -							00.040/	
<u>Results</u>	for 5 yea	ar +20% CC (<u>Critical Stor</u>	rm Durati	on. Low	<u>est mass b</u>	alance:	98.81%	
Node Event	U	S Peak	Level	Depth	Inflow	Node	Flood	l St	atus
	No	de (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute summe	r S17	<i>'</i> .0 10	10.632	0.032	5.4	0.0426	0.000	0 OK	
15 minute summe	r S17	<i>'</i> .1 10	8.607	0.057	13.1	0.0863	0.000	0 OK	
15 minute summe	r S17	<i>'</i> .2 10	8.159	0.059	16.0	0.0741	0.000	0 OK	
15 minute summe	r S17	<i>'</i> .3 10	6.714	0.114	44.9	0.2651	0.000	0 ОК	
15 minute summe	r S17	'.4 10	6.253	0.453	51.0	0.6222	0.000	0 <mark>SURC</mark> ł	HARGED
15 minute summe	r S18	8.0 10	6.843	0.043	6.6	0.0676	0.000	0 ОК	
15 minute summe	r S18	8.1 10	6.225	0.076	9.7	0.0982	0.000	0 ОК	
15 minute summe	r S18	8.2 10	6.210	0.281	19.3	0.3941	0.000	0 <mark>SURC</mark> ł	HARGED
15 minute summe	r S17	<i>'</i> .5 10	6.172	0.512	221.7	3.6156	0.000	0 <mark>SURC</mark> ł	HARGED
960 minute summ	er S17	7.6 720	5.986	1.386	27.3	252.3493	0.000	0 <mark>SURC</mark> ł	HARGED
960 minute summ	er S16	5.0 720	5.986	1.536	6.7	3.0151	0.000	0 SURCH	HARGED
960 minute summ	er S16	5.2 720	5.986	1.586	15.3	1.7937	0.000	0 SURCH	HARGED
960 minute summ	er S16	5.3 720	3.856	0.031	4.6	0.0349	0.000	0 ОК	
960 minute summ	er DSE	720	3.554	0.029	4.6	0.0000	0.000	O OK	
Link Event	US	Link	DS	Outflo	w Velo	ocity Flov	v/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	n/s)	-	Vol (m³)	Vol (m ³)
15 minute summer	S17.0	1	S17.1	5	.4 1	.029	0.044	0.2008	
15 minute summer	S17.1	1.001	S17.2	13	.1 1	.636	0.133	0.1004	

S17.3

S17.4

S17.5

S18.1

S18.2

S17.5

S17.6

S16.0

S16.2

S16.3

DSD1

16.0

44.4

50.2

6.6

8.9

4.6

15.3

4.6

4.6

23.7

213.5

1.973

1.345

0.713

1.063

0.702

0.636

1.938

0.450

0.513

1.451

0.143

0.499

0.776

0.180

0.215

0.425

1.447

0.034

0.050

0.036

0.2259

0.8263

2.8559

0.1016

0.8840

0.9288

1.1933

3.5196 0.2404

0.0163

290.9

1.002

1.003

1.004

2.001

2.002

1.005

1.007

1.008

1.01

Hydro-Brake®

2

S17.2

S17.3

S17.4

S18.0

S18.1

S18.2

S17.5

S17.6

S16.0

S16.2

S16.3

15 minute summer

960 minute summer

960 minute summer

960 minute summer

960 minute summer

Files Clearliffe Network 2021 OF

Barrett Mahony Consulting File: Clonliffe Network 2021-05 Page 7 BARRETT MAHONY Engineers Ltd. Network: Catchment 1 19.253 CONSULTING ENGINEERS CIVIL & STRUCTURAL 52-54 Lower Sandwith Street Holy Cross Lands Dirk Kotze Dublin 02 31/05/2021 Clonliffe Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 98.81% Node Event US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (m) (I/s) Vol (m³) (m³) 0.0000 15 minute summer S17.0 10 10.639 0.039 8.0 0.0515 ОК 15 minute summer S17.1 10 8.621 0.071 19.3 0.1069 0.0000 ОК 15 minute summer S17.2 10 8.170 0.070 23.5 0.0880 0.0000 ОК S17.3 7.017 0.417 65.8 0.9659 0.0000 15 minute summer 11 **SURCHARGED** 15 minute summer S17.4 10 6.591 0.791 67.8 1.0872 0.0000 **SURCHARGED** 6.852 9.6 15 minute summer S18.0 10 0.052 0.0822 0.0000 ОК 22.8 0.4992 0.0000 15 minute summer S18.1 10 6.537 0.388 **SURCHARGED** 15 minute summer S18.2 10 6.484 0.555 27.0 0.7769 0.0000 **SURCHARGED** SURCHARGED

0.764

1.732

1.884

1.934

0.032

0.031

313.7

46.2

8.4

5.0

5.0

10.6

5.3905

3.6993

2.1878

0.0366

0.0000

400.6752

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

SURCHARGED

SURCHARGED

SURCHARGED

OK

OK

15 minute summer

720 minute summer DSD1

S17.5

S17.6

S16.0

S16.2

S16.3

10

675

705

630

675

705

6.424

6.332

6.334

6.334

3.857

3.556

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	S17.0	1	S17.1	8.0	1.123	0.066	0.2728	
15 minute summer	S17.1	1.001	S17.2	19.3	1.834	0.195	0.1317	
15 minute summer	S17.2	1.002	S17.3	23.5	2.142	0.211	0.6167	
15 minute summer	S17.3	1.003	S17.4	60.1	1.531	0.676	1.0951	
15 minute summer	S17.4	1.004	S17.5	70.0	0.994	1.082	2.8559	
15 minute summer	S18.0	2	S18.1	9.6	1.147	0.262	0.1779	
15 minute summer	S18.1	2.001	S18.2	17.8	0.676	0.429	1.3623	
15 minute summer	S18.2	2.002	S17.5	30.6	0.776	0.548	0.9288	
15 minute summer	S17.5	1.005	S17.6	306.1	2.775	2.075	1.2197	
720 minute summer	S17.6	1.007	S16.0	5.1	0.242	0.037	3.5196	
720 minute summer	S16.0	1.008	S16.2	10.6	0.218	0.035	0.2404	
720 minute summer	S16.2	Hydro-Brake [®]	S16.3	5.0				
720 minute summer	S16.3	1.01	DSD1	5.0	1.487	0.040	0.0174	254.2

	Barret	t Mahony Co	onsulting	File: C	Clonliffe	Network 2	021-05	Page 8		
	Engine	ers Ltd.		Netw	ork: Cat	chment 1		19.253		
	52-54	Lower Sand	with Street	Dirk K	lotze			Holy Cros	s Lands	
	Dublin	02		31/05	/2021			Clonliffe		
<u>Results fo</u>	or 100 ye	ear +20% CC	C Critical Sto	orm Durat	tion. Lo	west mass	balance	<u>: 98.81%</u>		
Node Event	U	S Peak	Level	Depth	Inflow	Node	Flood	St	atus	
	No	de (mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)			
15 minute summe	r S17	'.0 10	10.644	0.044	10.3	0.0583	0.000	о ок		
15 minute summe	r S17	'.1 10	8.632	0.082	24.9	0.1233	0.000) OK		
15 minute summe	r S17	2.2 10	8.180	0.080	30.3	0.1005	0.000) OK		
15 minute summe	r S17	7.3 11	7.618	1.018	85.1	2.3608	0.000	D SURCH	HARGED	
15 minute summe	r S17	'.4 11	6.945	1.145	84.0	1.5728	0.000	D SURCH	HARGED	
15 minute summe	r S18	3.0 11	6.881	0.081	12.5	0.1274	0.000) OK		
15 minute summe	r S18	3.1 11	6.808	0.659	18.1	0.8479	0.000	D SURCH	HARGED	
15 minute summe	r S18	3.2 10	6.755	0.826	33.6	1.1573	0.000	D SURCH	HARGED	
15 minute summe	r S17	'.5 10	6.698	1.038	394.3	7.3262	0.000	D SURCH	HARGED	
960 minute summ	er S17	<i>'</i> .6 870	6.663	2.063	48.1	542.6556	0.000	D SURCH	HARGED	
960 minute summ	er S16	5.0 870	6.663	2.213	11.1	4.3445	0.000	D SURCH	HARGED	
960 minute summ	er S16	5.2 870	6.663	2.263	8.7	2.5596	0.000	D SURCH	HARGED	
960 minute summ	er S16	5.3 870	3.859	0.034	5.4	0.0380	0.000	О ОК		
960 minute summ	er DSI	01 870	3.557	0.032	5.4	0.0000	0.000	О ОК		
Link Event	US	Link	DS	Outflo	w Vel	ocity Flo	w/Cap	Link	Discharge	
(Upstream Depth)	Node		Node	(I/s)	(m	1/s)		Vol (m³)	Vol (m³)	
15 minute summer	S17.0	1	S17.1	10	.3 1	186	0.085	0.3327		
15 minute summer	S17.1	1.001	S17.2	24	.9 1	.957	0.252	0.1595		
15 minute summer	S17.2	1.002	S17.3	30	.3 2	2.108	0.272	0.7299		
15 minute summer	S17.3	1.003	S17.4	74	.0 1	.860	0.831	1.0951		

S17.5

S18.1

S18.2

S17.5

S17.6

S16.0

S16.2

S16.3

DSD1

88.3

12.1

20.9

34.9

386.2

5.3

8.7

5.4

5.4

1.254

1.233

0.710

0.879

3.501

0.224

-0.167

1.518

1.365

0.329

0.503

0.626

2.618

0.039

0.028

0.043

2.8559

0.2107

1.3623

0.9288

1.2197

3.5196

0.2404

0.0184

334.6

15 minute summer

960 minute summer

960 minute summer

960 minute summer

960 minute summer S17.6

S17.4 1.004

2.001

2.002

1.005

1.007

1.008

1.01

Hydro-Brake®

S18.0 2

S18.1

S18.2

S17.5

S16.0

S16.2

S16.3

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Street Dublin 02	File: Clonliffe Network 2021-05 Network: Catchment 2 Dirk Kotze 31/05/2021	Page 1 19.253 Holy Cross Lands Clonliffe
	Desig	n Settings	
Rainfall Methodolo Return Period (yea	gy FSR rs) 5	Maximum Time of Concentration (n Maximum Rainfall (mm	nins) 30.00 n/hr) 50.0

Return Period (years)	5	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	Scotland and Ireland	Connection Type	Level Soffits
M5-60 (mm)	16.100	Minimum Backdrop Height (m)	0.200
Ratio-R	0.278	Preferred Cover Depth (m)	1.200
CV	1.000	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
			(m)				
S2.0	0.317	4.00	12.150	1200	716191.760	736268.112	1.650
S2.1			11.000	1200	716234.233	736258.158	1.500
S3.0		4.00	11.000	1200	716252.640	736260.436	2.985
S2.2			11.000	1200	716250.845	736254.505	3.000
EX.MH206		4.00	11.000	1200	716252.316	736252.919	2.160
S2.3			11.000	1200	716263.268	736251.875	3.126
S2.4			8.960	1200	716331.487	736233.962	1.793
S5.0		4.00	8.830	1200	716335.029	736235.666	1.080
S5.1			8.800	1200	716346.229	736232.666	1.784
S7.0	0.207	4.00	8.600	1200	716345.586	736236.966	1.615
S5.2			8.782	1200	716347.592	736236.177	1.802
S6.1	0.328	4.00	7.900	1200	716403.155	736215.771	1.950
S6.2			8.250	1200	716372.468	736223.883	2.450
S6.3	0.025	4.00	8.775	1200	716356.607	736232.530	3.067
S6.4			8.750	1200	716355.993	736237.267	3.164
S6.5			8.750	1200	716354.587	736248.098	3.222
S8.0	0.075	4.00	8.800	1500	716368.511	736269.364	1.600
S6.8			8.490	1500	716381.760	736264.124	3.204
S9.1	0.121	4.00	9.500	1200	716357.208	736306.870	1.230
S9.2	0.121	4.00	9.130	1200	716378.588	736329.645	1.168
S10.0	0.074	4.00	8.750	1200	716398.321	736325.508	2.000
S11.0	0.099	4.00	8.554	1200	716407.842	736333.911	2.054
S9.3			8.500	1200	716408.785	736332.377	2.050
S6.9			8.476	1200	716413.829	736329.919	3.483
S6.10	0.023	4.00	8.417	1500	716437.332	736351.764	3.552
S6.11	0.018	4.00	7.380	1200	716426.597	736375.294	2.621
S19.0	0.005	4.00	11.525	1200	716264.729	736298.456	1.075
S19.1	0.006	4.00	10.755	1200	716281.810	736363.609	1.148
S19.2	0.010	4.00	10.920	1200	716269.667	736372.927	1.472
S19.3	0.150	4.00	11.655	1200	716252.864	736379.325	2.392
S12.0			10.380	1200	716260.441	736386.128	1.780
S15.0	0.007	4.00	9.850	1200	716204.618	736448.137	1.450
S20.0	0.113	4.00	11.150	1200	716215.725	736429.309	2.650
S15.1	0.011	4.00	9.585	1200	716219.746	736438.535	1.881
S15.2	0.030	4.00	9.330	1200	716270.735	736424.594	2.330
S15.3	0.022	4.00	7.750	1200	716311.467	736413.683	1.750
S13.1	0.176	4.00	10.150	1200	716335.929	736381.964	4.350
S13.0			7.215	1200	716341.324	736399.374	1.565
S15.4	0.019	4.00	7.275	1200	716343.131	736405.203	1.725
S15.5	0.011	4.00	7.090	1200	716362.476	736400.459	1.790
S15.6	0.019	4.00	6.766	1200	716392.541	736390.421	2.066

BM BARF	RETT MAHONY JITING ENGINEERS & STRUCTURAL	Engir 52-54 Dubl	Engineers Ltd. 52-54 Lower Sandwith Street Dublin 02				Network: Catchment 2 Dirk Kotze 31/05/2021					19.253 Holy Cross Lands Clonliffe		
					No	des (
	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diame (mn	eter n)	East (m	ing 1)	Northi (m)	ng Do	epth (m)			
	S14.0 S6.12 S6.13 S6.14 DSD2	0.022	4.00 4.00	7.201 6.790 5.380 4.855 4.720	1 1 1 1 1	200 7 500 7 200 7 200 7 200 7	71638 71640 71642 71646 71646	5.349 8.826 9.891 2.796 6.877	736383 736383 736460 736494 736499	865 2 203 2 955 1 860 1 692 2	.511 .334 .830 .840 .005			
					<u>Liı</u>	<u>nks</u>								
Name	US Node	DS Node	Length (m) 43.624	ks (mm) , n 0.600	/ US (m	n)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm) 225	T of C (mins) 4 37	Rain (mm/hr)		
1.001 2	S2.1 S3.0	S2.2 S2.2	17.009 6.197	0.60	9.5 9.5 8.0	500 9 015 8	.000	0.500 0.015	34.0 413.1	225 225	4.49 4.16	50.0 50.0		
1.002 3 1.003	S2.2 EX.MH206 S2.3	S2.3 S2.3 S2.4	12.698 11.002 70.532	0.600 0.600 0.600	0 8.0 0 8.8 0 7.8	000 7 840 8 874 7	.874 .600 .167	0.126 0.240 0.707	100.8 45.8 99.8	225 225 225	4.65 4.09 5.55	50.0 50.0 50.0		
1.004 4 1.005	S2.4 S5.0 S5.1	S5.1 S5.1 S5.2	14.799 11.595 3.766	0.60 0.60 0.60	0 7.1 0 7.7 0 7.0	167 7 750 7 016 6	.016 .650 .980	0.151 0.100 0.036	98.0 115.9 104.6	225 225 225	5.74 4.16 5.79	50.0 50.0 50.0		
5 1.006 6	S7.0 S5.2 S6.1	S5.2 S6.4 S6.2	2.156 8.471 31.741	0.60 0.60 0.60	0 6.9 0 6.9 0 5.9	985 6 980 6 950 5	.980 .890 .800	0.005 0.090 0.150	431.1 94.1 211.6	225 225 225	4.06 5.89 4.59	50.0 50.0 50.0		
6.001 6.002 1.007	S6.2 S6.3	S6.3 S6.4	18.065 4.777	0.60	0 5.8	800 5 708 5	.708	0.092	196.4 39.2	225 225 300	4.92 4.95	50.0 50.0 50.0		
1.007 1.008 7	S6.5 S8.0	S6.8 S6.8	31.547 14.248	0.600	0 5.5 0 7.2	528 5 200 7	.286	0.242	130.4 71.2	300 225	6.44 4.15	50.0 50.0		
8	S9.1	S9.2	31.238	0.600	0 8.2	280 4 270 7	.995 .962	0.295	101.4	225	4.40	50.0		
		Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	D Dej (n	SΣ oth (n)	Area Σ (ha) li	: Add nflow (I/s)				
		1 1.001 2	1.986 2.250 0.637	79.0 89.5 25 3	57.3 57.3 0.0	1.425 1.275 2 760	1.2 1.7 2 7	275 (775 (775 ().317).317).000	0.0 0.0 0.0				
		1.002 3	1.302 1.937	51.8 77.0	57.3 0.0	2.775 1.935	2.9)01 (175 ().317	0.0				
		1.003 1.004 4	1.305 1.321 1.213	52.5 48.2	57.3 57.3	1.568 0.855	1.5 0.9	559 (625 ().317).317).000	0.0				
		1.005 5 1.006	1.278 0.623 1.348	50.8 24.8 53.6	57.3 37.4 94.7	1.559 1.390 1.577	1.5 1.5 1.6	577 (577 (535 ().317).207).524	0.0 0.0 0.0				
		6 6.001 6.002	0.895 0.929 2.097	35.6 36.9 83.4	59.3 59.3 63.8	1.725 2.225 2.842	2.2 2.8 2.9	225 (342 (339 ().328).328).353	0.0 0.0 0.0				
		1.007 1.008 7	1.142 1.375 1.551	80.7 2 97.2 2 61.7	158.5 158.5 13.6	2.864 2.922 1.375	2.9 2.9 1.2	922 (904 (265 ().877).877).075	0.0 0.0 0.0				
		1.009 8	1.142 1.298	126.1 2 51.6	177.6 21.9	2.829 1.005	3.1 0.9	108 (943 ().983).121	0.0 0.0				

Barrett Mahony Consulting

File: Clonliffe Network 2021-05

Page 2

				Barrell Iviar	arrett Mahony Consulting			File: Clonliffe Network 2021-05				Page 3		
2N/		T MAHO	NY FRS	Engineers Lt	:d.		Network	: Catchm	ient 2		19.253			
	CIVIL & S	TRUCTU	RAL	52-54 Lowe	r Sandwith S	treet	Dirk Kotz	e			Holy Cross Lands			
				Dublin 02			31/05/20)21			Clonliffe			
	Name	US	DS	E Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
		Node	Noc	le (m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
	8.001	S9.2	S9.3	30.320	0.600	7.962	7.250	0.712	42.6	225	4.65	50.0		
	9	S10.0	S9.3	3 12.517	0.600	6.750	6.450	0.300	41.7	225	4.10	50.0		
	10	S11.0	S9.3	3 1.801	0.600	6.500	6.450	0.050	36.0	225	4.01	50.0		
	8.002	S9.3	S6.9	5.611	0.600	6.450	6.400	0.050	112.2	225	4.73	50.0		
	1.01	S6.9	S6.1	LO 32.087	0.600	4.993	4.865	0.128	250.7	375	7.97	50.0		
	1.011	S6.10	S6.1	L1 25.863	0.600	4.865	4.759	0.106	244.0	375	8.35	49.2		
	1.012	S6.11	S6.1	l 2 19.451	0.600	4.759	4.606	0.153	127.1	375	8.55	48.7		
	11	S19.0	S19	.1 67.355	0.600	10.450	9.607	0.843	79.9	150	5.00	50.0		
	11.001	S19.1	S19	.2 15.306	0.600	9.607	9.448	0.159	96.3	150	5.25	50.0		
	11.002	S19.2	S19	.3 17.980	0.600	9.448	9.263	0.185	97.2	150	5.54	50.0		
	11.003	S19.3	S12	.0 10.183	0.600	9.263	9.250	0.013	783.3	225	5.91	50.0		
	11.005	S12.0	S15	.2 39.820	0.600	8.600	7.300	1.300	30.6	150	6.27	50.0		
	14	S15.0	S15	.1 17.918	0.600	8.400	8.100	0.300	59.7	225	4.18	50.0		
	15	S20.0	S15	.1 10.064	0.600	8.500	7.704	0.796	12.6	150	4.06	50.0		
	14.001	S15.1	S15	.2 52.860	0.600	7.704	7.000	0.704	75.1	300	4.66	50.0		
	11.006	S15.2	S15	.3 42.168	0.600	7.000	6.000	1.000	42.2	300	6.56	50.0		
	11.007	S15.3	S15	.4 32.780	0.600	6.000	5.550	0.450	72.8	300	6.86	50.0		
	13	S13.1	S13	.0 18.227	0.600	5.800	5.650	0.150	121.5	225	4.26	50.0		
	13.001	S13.0	S15	.4 6.103	0.600	5.650	5.550	0.100	61.0	225	4.32	50.0		
	11.008	S15.4	S15	.5 19.918	0.600	5.550	5.300	0.250	79.7	300	7.05	50.0		
	11.009	S15.5	S15	.6 31.696	0.600	5.300	5.000	0.300	105.7	300	7.39	50.0		
	11.01	S15.6	S6.1	17.813	0.600	4.700	4.606	0.094	189.5	300	7.65	50.0		
	12	S14.0	S6.1	L 2 23.486	0.600	4.690	4.603	0.087	270.0	375	4.36	50.0		
	1.013	S6.12	S6.1	L 3 80.555	0.600	4.456	3.550	0.906	88.9	225	9.52	46.4		

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
8.001	2.010	79.9	43.7	0.943	1.025	0.242	0.0
9	2.031	80.7	13.4	1.775	1.825	0.074	0.0
10	2.187	86.9	17.9	1.829	1.825	0.099	0.0
8.002	1.233	49.0	75.0	1.825	1.851	0.415	0.0
1.01	1.140	125.9	252.6	3.108	3.177	1.398	0.0
1.011	1.155	127.6	252.8	3.177	2.246	1.421	0.0
1.012	1.605	177.3	253.3	2.246	1.809	1.439	0.0
11	1.125	19.9	0.9	0.925	0.998	0.005	0.0
11.001	1.024	18.1	2.0	0.998	1.322	0.011	0.0
11.002	1.019	18.0	3.8	1.322	2.242	0.021	0.0
11.003	0.459	18.3	30.9	2.167	0.905	0.171	0.0
11.005	1.825	32.3	30.9	1.630	1.880	0.171	0.0
14	1.695	67.4	1.3	1.225	1.260	0.007	0.0
15	2.848	50.3	20.4	2.500	1.731	0.113	0.0
14.001	1.816	128.4	23.7	1.581	2.030	0.131	0.0
11.006	2.428	171.6	60.0	2.030	1.450	0.332	0.0
11.007	1.844	130.3	64.0	1.450	1.425	0.354	0.0
13	1.185	47.1	31.8	4.125	1.340	0.176	0.0
13.001	1.677	66.7	31.8	1.340	1.500	0.176	0.0
11.008	1.763	124.6	99.2	1.425	1.490	0.549	0.0
11.009	1.529	108.1	101.2	1.490	1.466	0.560	0.0
11.01	1.138	80.5	104.6	1.766	1.884	0.579	0.0
12	1.098	121.2	0.0	2.136	1.812	0.000	0.0
1.013	1.387	55.1	342.0	2.109	1.605	2.040	0.0

Barrett Mahony Consulting File: Clonliffe Network 2021-05 Page 4 BARRETT MAHONY Engineers Ltd. Network: Catchment 2 19.253 CONSULTING ENGINEERS CIVIL & STRUCTURAL 52-54 Lower Sandwith Street Dirk Kotze Holy Cross Lands Dublin 02 31/05/2021 Clonliffe Links US DS ks (mm) / US IL DS IL Fall Slope Dia T of C Rain Name Length Node Node (1:X) (mm/hr) (m) (m) (m) (m) (mm) (mins) n 1.014 S6.13 S6.14 47.247 0.600 3.550 3.015 0.535 88.3 225 10.08 45.2 1.015 S6.14 DSD2 6.325 0.600 3.015 2.715 0.300 21.1 225 10.12 45.1 Vel US DS Σ Area Σ Add Name Cap Flow (m/s) (I/s) (I/s) Depth Depth (ha) Inflow (m) (I/s) (m) 1.392 55.3 2.040 1.014 333.0 1.605 1.615 0.0

Pipeline Schedule

1.615

332.4

1.015

2.862

113.8

1.780

2.040

0.0

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1	43.624	43.6	225	Circular	12.150	10.500	1.425	11.000	9.500	1.275
1.001	17.009	34.0	225	Circular	11.000	9.500	1.275	11.000	9.000	1.775
2	6.197	413.1	225	Circular	11.000	8.015	2.760	11.000	8.000	2.775
1.002	12.698	100.8	225	Circular	11.000	8.000	2.775	11.000	7.874	2.901
3	11.002	45.8	225	Circular	11.000	8.840	1.935	11.000	8.600	2.175
1.003	70.532	99.8	225	Circular	11.000	7.874	2.901	8.960	7.167	1.568
1.004	14.799	98.0	225	Circular	8.960	7.167	1.568	8.800	7.016	1.559
4	11.595	115.9	225	Circular	8.830	7.750	0.855	8.800	7.650	0.925
1.005	3.766	104.6	225	Circular	8.800	7.016	1.559	8.782	6.980	1.577
5	2.156	431.1	225	Circular	8.600	6.985	1.390	8.782	6.980	1.577
1.006	8.471	94.1	225	Circular	8.782	6.980	1.577	8.750	6.890	1.635
6	31.741	211.6	225	Circular	7.900	5.950	1.725	8.250	5.800	2.225
6.001	18.065	196.4	225	Circular	8.250	5.800	2.225	8.775	5.708	2.842
6.002	4.777	39.2	225	Circular	8.775	5.708	2.842	8.750	5.586	2.939
1.007	10.922	188.3	300	Circular	8.750	5.586	2.864	8.750	5.528	2.922
1.008	31.547	130.4	300	Circular	8.750	5.528	2.922	8.490	5.286	2.904
7	14.248	71.2	225	Circular	8.800	7.200	1.375	8.490	7.000	1.265
1.009	73.194	249.8	375	Circular	8.490	5.286	2.829	8.476	4.993	3.108

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1	S2.0	1200	Manhole	Adoptable	S2.1	1200	Manhole	Adoptable
1.001	S2.1	1200	Manhole	Adoptable	S2.2	1200	Manhole	Adoptable
2	S3.0	1200	Manhole	Adoptable	S2.2	1200	Manhole	Adoptable
1.002	S2.2	1200	Manhole	Adoptable	S2.3	1200	Manhole	Adoptable
3	EX.MH206	1200	Manhole	Adoptable	S2.3	1200	Manhole	Adoptable
1.003	S2.3	1200	Manhole	Adoptable	S2.4	1200	Manhole	Adoptable
1.004	S2.4	1200	Manhole	Adoptable	S5.1	1200	Manhole	Adoptable
4	S5.0	1200	Manhole	Adoptable	S5.1	1200	Manhole	Adoptable
1.005	S5.1	1200	Manhole	Adoptable	S5.2	1200	Manhole	Adoptable
5	S7.0	1200	Manhole	Adoptable	S5.2	1200	Manhole	Adoptable
1.006	S5.2	1200	Manhole	Adoptable	S6.4	1200	Manhole	Adoptable
6	S6.1	1200	Manhole	Adoptable	S6.2	1200	Manhole	Adoptable
6.001	S6.2	1200	Manhole	Adoptable	S6.3	1200	Manhole	Adoptable
6.002	S6.3	1200	Manhole	Adoptable	S6.4	1200	Manhole	Adoptable
1.007	S6.4	1200	Manhole	Adoptable	S6.5	1200	Manhole	Adoptable
1.008	S6.5	1200	Manhole	Adoptable	S6.8	1500	Manhole	Adoptable
7	S8.0	1500	Manhole	Adoptable	S6.8	1500	Manhole	Adoptable
1.009	S6.8	1500	Manhole	Adoptable	S6.9	1200	Manhole	Adoptable

BARRET CONSULTI CIVIL & S	Barre Engir 52-54 Dubli	Engineers Ltd. 52-54 Lower Sandwith Street Dublin 02			Network: Catchment 2 Dirk Kotze 31/05/2021			Page 5 19.253 Holy Cross Lands Clonliffe			
				<u>P</u>	<u>Pipeline Sc</u>	<u>hedule</u>					
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth	
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)	
8	31.238	101.4	225	Circular	9.500	8.270	1.005	9.130	7.962	0.943	
8.001	30.320	42.6	225	Circular	9.130	7.962	0.943	8.500	7.250	1.025	
9	12.517	41.7	225	Circular	8.750	6.750	1.775	8.500	6.450	1.825	
10	1.801	36.0	225	Circular	8.554	6.500	1.829	8.500	6.450	1.825	
8.002	5.611	112.2	225	Circular	8.500	6.450	1.825	5 8.476	6.400	1.851	
1.01	32.087	250.7	375	Circular	8.476	4.993	3.108	8 8.417	4.865	3.177	
1.011	25.863	244.0	375	Circular	8.417	4.865	3.177	7.380	4.759	2.246	
1.012	19.451	127.1	375	Circular	7.380	4.759	2.246	6.790	4.606	1.809	
11	67.355	79.9	150	Circular	11.525	10.450	0.925	5 10.755	9.607	0.998	
11.001	15.306	96.3	150	Circular	10.755	9.607	0.998	3 10.920	9.448	1.322	
11.002	17.980	97.2	150	Circular	10.920	9.448	1.322	2 11.655	9.263	2.242	
11.003	10.183	783.3	225	Circular	11.655	9.263	2.167	10.380	9.250	0.905	
11.005	39.820	30.6	150	Circular	10.380	8.600	1.630	9.330	7.300	1.880	
14	17.918	59.7	225	Circular	9.850	8.400	1.225	9.585	8.100	1.260	
15	10.064	12.6	150	Circular	11.150	8.500	2.500	9.585	7.704	1.731	
14.001	52.860	75.1	300	Circular	9.585	7.704	1.581	l 9.330	7.000	2.030	
11.006	42.168	42.2	300	Circular	9.330	7.000	2.030) 7.750	6.000	1.450	
11.007	32.780	72.8	300	Circular	7.750	6.000	1.450) 7.275	5.550	1.425	
13	18.227	121.5	225	Circular	10.150	5.800	4.125	5 7.215	5.650	1.340	
13.001	6.103	61.0	225	Circular	7.215	5.650	1.340) 7.275	5.550	1.500	
11.008	3 19.918	79.7	300	Circular	7.275	5.550	1.425	5 7.090	5.300	1.490	
11.009	31.696	105.7	300	Circular	7.090	5.300	1.490	6.766	5.000	1.466	
11.01	17.813	189.5	300	Circular	6.766	4.700	1.766	6.790	4.606	1.884	
12	23.486	270.0	375	Circular	7.201	4.690	2.136	6.790	4.603	1.812	
1.013	80.555	88.9	225	Circular	6.790	4.456	2.109	5.380	3.550	1.605	
	Link	US	Dia	Node	MH 	DS	Dia	Node	MH -		
	0	NODE	(mm)	iype	туре	Node	(mm)	iype	iype		
	ð 0.001	29.T	1200	iviannoie	Adoptabl	e 59.2	1200	iviannoie	Adoptabl	e	
	8.001	59.2	1200	iviannole	Adoptabl	e 59.3	1200	iviannoie	Adoptabl	e	
	9 10	510.0	1200	iviannoie	Adoptabl	e 59.3	1200	iviannoie	Adoptabl	e	
	8 000 TU	511.0	1200	Manhole	Adoptabl	e 59.3	1200	Manhole	Adoptabl	e	
	8.002	39.3	1200	iviannole	Adoptabl	e 56.9	1200	iviannole	Adoptabl	e	
	1.01	26.9	1200	iviannole	Adoptabl	e 56.10	1500	ivianhole	Adoptabl	е	

5	510.0	1200	Mannoic	Adoptable	55.5	1200	Widniforc	Adoptable
10	S11.0	1200	Manhole	Adoptable	S9.3	1200	Manhole	Adoptable
8.002	S9.3	1200	Manhole	Adoptable	S6.9	1200	Manhole	Adoptable
1.01	S6.9	1200	Manhole	Adoptable	S6.10	1500	Manhole	Adoptable
1.011	S6.10	1500	Manhole	Adoptable	S6.11	1200	Manhole	Adoptable
1.012	S6.11	1200	Manhole	Adoptable	S6.12	1500	Manhole	Adoptable
11	S19.0	1200	Manhole	Adoptable	S19.1	1200	Manhole	Adoptable
11.001	S19.1	1200	Manhole	Adoptable	S19.2	1200	Manhole	Adoptable
11.002	S19.2	1200	Manhole	Adoptable	S19.3	1200	Manhole	Adoptable
11.003	S19.3	1200	Manhole	Adoptable	S12.0	1200	Manhole	Adoptable
11.005	S12.0	1200	Manhole	Adoptable	S15.2	1200	Manhole	Adoptable
14	S15.0	1200	Manhole	Adoptable	S15.1	1200	Manhole	Adoptable
15	S20.0	1200	Manhole	Adoptable	S15.1	1200	Manhole	Adoptable
14.001	S15.1	1200	Manhole	Adoptable	S15.2	1200	Manhole	Adoptable
11.006	S15.2	1200	Manhole	Adoptable	S15.3	1200	Manhole	Adoptable
11.007	S15.3	1200	Manhole	Adoptable	S15.4	1200	Manhole	Adoptable
13	S13.1	1200	Manhole	Adoptable	S13.0	1200	Manhole	Adoptable
13.001	S13.0	1200	Manhole	Adoptable	S15.4	1200	Manhole	Adoptable
11.008	S15.4	1200	Manhole	Adoptable	S15.5	1200	Manhole	Adoptable
11.009	S15.5	1200	Manhole	Adoptable	S15.6	1200	Manhole	Adoptable
11.01	S15.6	1200	Manhole	Adoptable	S6.12	1500	Manhole	Adoptable
12	S14.0	1200	Manhole	Adoptable	S6.12	1500	Manhole	Adoptable
1.013	S6.12	1500	Manhole	Adoptable	S6.13	1200	Manhole	Adoptable

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

BARRETT CONSULTING CIVIL & STI	MAHONY Sengineers Ructural	Barret Engine 52-54 Dublir	tt Mahony eers Ltd. Lower Sar n 02	Consultir ndwith Sti	ng F N reet D 3	ile: Clonl letwork: 0irk Kotze 1/05/20	liffe Netwo Catchmen 2 21	rk 2021-0 t 2	5 Page 19.2 Holy Clor	e 6 253 y Cross Lar hliffe	nds
				<u>Pi</u> p	peline Sch	<u>nedule</u>					
Link 1.014 1.015	Length (m) 47.247 6.325	Slope (1:X) 88.3 21.1	Dia (mm) 225 225	Link Type Circular Circular	US CL (m) 5.380 4.855	US IL (m) 3.550 3.015	US Depth (m) 1.605 1.615	DS CL (m) 4.855 4.720	DS IL (m) 3.015 2.715	DS Dept (m) 1.61 1.78	. h .5 30
	Link N 1.014 Sc 1.015 Sc	US (r 10de (r 6.13 1 6.14 1	Dia N mm) T 1200 Ma 1200 Ma	ode ype nhole A nhole A	MH Type doptable	DS Node S6.14 DSD2	Dia (mm) 1200 1200	Node Type Manhole Manhole	Ⅳ Ty Adop Adop	IH pe otable otable	
				Ma	inhole Sc	<u>hedule</u>					
Node	Eastin (m)	g [Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conne	ctions	Link	IL (m)	Dia (mm)
52.0	/16191.	/60 /3	50268.112	12.150	1.650	1200	G	⇒₀			
S2.1	716234.	233 73	86258.158	11.000	1.500	1200	1	0 1 ≯₀	1	10.500 9.500	225 225
S3.0	716252.	640 73	36260.436	11.000	2.985	1200		0	1.001	9.500	225
							\mathcal{P}	0	2	8.015	225
S2.2	716250.3	845 73	36254.505	11.000	3.000	1200	2	1 2 ≫₀	2 1.001	8.000 9.000	225 225
EX.MH206	716252.	316 73	86252.919	11.000	2.160	1200	Ģ	0	1.002	8.000	225
<u> </u>	716262	200 70		11.000	2 1 2 C	1200		0	3	8.840	225
52.5	/10203	208 /3	50251.875	11.000	3.120	1200	7	1 2 ≫₀	3 1.002	8.600 7.874	225
S2.4	716331.4	487 73	36233.962	8.960	1.793	1200	1	0 1 →₀	1.003 1.003	7.874	225 225
S5.0	716335.0	029 73	36235.666	8.830	1.080	1200		0	1.004	7.167	225
								0	4	7.750	225
55.1	/16346.	229 73	36232.666	8.800	1.784	1200	2-0	1 2	4 1.004	7.650 7.016	225 225
S7.0	716345.	586 73	36236.966	8.600	1.615	1200		0	1.005	7.016	225
							Q	≫₀ 0	5	6.985	225

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 7
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
S5.2	716347.592	736236.177	8.782	1.802	1200		1	5	6.980	225
							2	1.005	6.980	225
						2	0	1.006	6.980	225
S6.1	716403.155	736215.771	7.900	1.950	1200	0 <				
							0	6	5.950	225
S6.2	716372.468	736223.883	8.250	2.450	1200	⁰ ~ _ 1	1	6	5.800	225
							0	6.001	5.800	225
S6.3	716356.607	736232.530	8.775	3.067	1200		1	6.001	5.708	225
							0	6.002	5.708	225
S6.4	716355.993	736237.267	8.750	3.164	1200	1	1	6.002	5.586	225
						2	2	1.006	6.890	225
						1	0	1.007	5.586	300
56.5	/16354.58/	/36248.098	8.750	3.222	1200	₽ ^{¬0}	1	1.007	5.528	300
						1	0	1.008	5.528	300
S8.0	716368.511	736269.364	8.800	1.600	1500					225
<u> </u>	746204 760	726264 424	0.400	2 204	4500		0	7	7.200	225
56.8	/16381.760	/36264.124	8.490	3.204	1500	1	1	/	7.000	225
						2	2	1.008	5.280	300
S9.1	716357.208	736306.870	9.500	1.230	1200		0	1.009	5.286	375
						, di				
							0	8	8.270	225
\$9.2	716378.588	736329.645	9.130	1.168	1200	→ 0	1	8	7.962	225
						1	0	8.001	7.962	225
S10.0	716398.321	736325.508	8.750	2.000	1200	()-7 ⁰				
							0	9	6.750	225
S11.0	716407.842	736333.911	8.554	2.054	1200	Q				
						0	0	10	6.500	225
S9.3	716408.785	736332.377	8.500	2.050	1200	1	1	10	6.450	225
						3	2	9	6.450	225
						2 2 0	3	8.001	7.250	225
							0	8.002	6.450	225

Node Easting (m) Northing (m) CL (m) Depth (m) Dia (m) Connections (m) Link (m)				Barrett Maho	ny Consul	ting	File: Clo	onliffe Network	2021	-05 Pa	Page 8		
Circle 287406*01842 S2-54 Lower Sandwith Street Dublin 02 Dirk Kotze 31/05/2021 Holy Cross Lands Connections Holy Cross Lands Connections Node Easting Northing (m) Ch Depth (m) Dirk (m) Connections Link In Dirk (m) Connections Link In Mode 56.9 716413.829 736329.919 8.476 3.483 1200 1 8.002 6.400 225 56.10 716437.332 736351.764 8.417 3.552 1500 1 1.01 4.865 375 56.10 716426.597 736375.294 7.380 2.621 1200 1 1.011 4.865 375 519.0 716264.729 736375.294 7.380 2.621 1200 1 1.011 4.865 375 519.0 716264.729 736375.294 7.380 2.621 1200 1 1.001 9.607 150 519.1 716269.667 736372.927 10.920 1.472 1200 1 <	RM	CONSUL	TING ENGINEERS	Engineers Ltd.			Networ	k: Catchment 2	2	1	19.253		
Dublin 02 31/05/2021 Clonitife Node Easting (m) Northing (m) CL Depth (m) Dia (m) Connections Link IL Dia (m) 56.9 716413.829 736329.919 8.476 3.483 120 1 8.002 6.400 225 56.10 716437.332 736351.764 8.417 3.552 1500 1 1.011 4.865 375 56.10 716426.597 736375.294 7.380 2.621 1200 0 1.011 4.865 375 51.0 716264.729 736298.456 11.525 1.075 1200 0 1.012 4.759 375 519.0 716264.729 736375.294 7.380 2.621 1200 0 1.011 4.865 150 519.1 716264.729 736375.294 7.380 2.621 1200 0 1.011 4.865 150 519.1 716281.810 736375.2927 10.920 1.472 1200		CIVIL &	STRUCTURAL	52-54 Lower S	Sandwith S	Street	Dirk Ko	tze		H	oly Cross La	ands	
Note Easting Note Ch Perth Dia Connections Link Lin Lin Lin 56.9 716413.829 736329.919 8.476 3.483 1200 1 8.002 4.993 375 56.10 716437.332 736351.764 8.417 3.552 1500 1 1.011 4.865 375 56.10 716427.597 736375.294 7.380 2.621 1200 0 1.011 4.865 375 56.11 716264.729 736375.294 7.380 2.621 1200 0 1.011 4.865 375 51.01 716264.729 736375.294 1.525 1.075 1200				Dublin 02			31/05/2	2021		C	lonliffe		
Node Easting (m) Northing (m) CL (m) Opent (m) Dia (m) Connections Link (m)													
Node Easting (m) Northing (m) Cl. (m) Depth (m) Dia (mm) Connections Link Li Dia (mm) 56.9 716413.829 736329.919 8.476 3.483 1200 $$ 1 8.002 6.400 225 56.10 716437.332 736351.764 8.417 3.552 1500 $$ 1 1.01 4.993 3.75 56.10 716437.332 736375.294 7.380 2.621 1200 $$ 1 1.011 4.865 3.75 56.11 716426.597 736375.294 7.380 2.621 1200 $$ 0 1.011 4.865 3.75 519.0 716264.729 736363.609 10.755 1.075 1200 $$ 0 1.012 4.759 3.75 519.2 716269.667 736372.927 10.920 1.472 1200 $$ 1 11.001 9.448 150 519.3 716250.667 736379.325 11.655<					Ν	Anhole	<u>Schedule</u>						
NodeEasting (m)Northing (m)CL (m)Depth (m)Dia (m)ConnectionsLink (m)									1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Node	Easting	Northing	CL	Depth	Dia	Connection	IS	Link	IL ()	Dia	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(m)	(m)	(m)	(m)	(mm)		_		(m)	(mm)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\$6.9	/16413.829	/36329.919	8.476	3.483	1200	1 A	1	8.002	6.400	225	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									2	1.009	4.993	375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								\mathcal{P}	_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2	0	1.01	4.993	375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\$6.10	716437.332	736351.764	8.417	3.552	1500	°~	1	1.01	4.865	375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								\bigcirc					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1	_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	1.011	4.865	375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S6.11	716426.597	736375.294	7.380	2.621	1200		1	1.011	4.759	375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Y					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4953	1	0	1.012	4.759	375	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\$19.0	/16264.729	/36298.456	11.525	1.075	1200	Å					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								\frown					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								\bigcirc					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	11	10.450	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S19.1	716281.810	736363.609	10.755	1.148	1200	0 -	1	11	9.607	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Ň					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								φ					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1	0	11.001	9.607	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S19.2	716269.667	736372.927	10.920	1.472	1200		1	11.001	9.448	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								° <					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0	11.002	9.448	150	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S19.3	716252.864	736379.325	11.655	2.392	1200	_0	1	11.002	9.263	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								(\checkmark)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0	11.003	9.263	225	
Image: Non-Sisted state		S12.0	716260.441	736386.128	10.380	1.780	1200	Ŷ	1	11.003	9.250	225	
1 0 11.005 8.600 150 \$15.0 716204.618 736448.137 9.850 1.450 1200 0 14 8.400 225 \$20.0 716215.725 736429.309 11.150 2.650 1200 0 14 8.400 225 \$21.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150								\bigcirc					
0 11.005 8.600 150 \$15.0 716204.618 736448.137 9.850 1.450 1200 0 14 8.400 225 \$20.0 716215.725 736429.309 11.150 2.650 1200 0 14 8.400 225 \$20.0 716215.725 736429.309 11.150 2.650 1200 0 15 8.500 150 \$515.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150													
S15.0 716204.618 736448.137 9.850 1.450 1200 Image: Constraint of the state of the sta								-	0	11.005	8.600	150	
S20.0 716215.725 736429.309 11.150 2.650 1200 0 14 8.400 225 S15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150		S15.0	716204.618	736448.137	9.850	1.450	1200						
0 14 8.400 225 \$20.0 716215.725 736429.309 11.150 2.650 1200 1 0 15 8.500 150 \$15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150								\bigcirc					
0 14 8.400 225 \$20.0 716215.725 736429.309 11.150 2.650 1200 1 15 8.500 150 \$15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150													
S20.0 716215.725 736429.309 11.150 2.650 1200 1 15 8.500 150 S15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150									0	14	8.400	225	
O 15 8.500 150 \$15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150		S20.0	716215.725	736429.309	11.150	2.650	1200	Å					
0 15 8.500 150 S15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150								\frown					
0 15 8.500 150 \$15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150								\bigcirc					
S15.1 716219.746 736438.535 9.585 1.881 1200 1 15 7.704 150									0	15	8.500	150	
		S15.1	716219.746	736438.535	9.585	1.881	1200	2 .	1	15	7.704	150	
								$\overline{\mathcal{A}}$	2	14	8.100	225	
								$\gamma \rightarrow 0$					
1 0 14.001 7.704 300								1	0	14.001	7.704	300	
S15.2 716270.735 736424.594 9.330 2.330 1200 1 14.001 7.000 300		S15.2	716270.735	736424.594	9.330	2.330	1200		1	14.001	7.000	300	
								1	2	11.005	7.300	150	
								$\gamma \rightarrow 0$					
2 [′] 0 11.006 7.000 300								2	0	11.006	7.000	300	
\$15.3 716311.467 736413.683 7.750 1.750 1200 1 11.006 6.000 300		S15.3	716311.467	736413.683	7.750	1.750	1200		1	11.006	6.000	300	
								1					
0 11.007 6.000 300									0	11.007	6.000	300	

BM	BARRE CONSULT CIVIL & S	TT MAHONY ING ENGINEERS STRUCTURAL	Engineers Ltd. 52-54 Lower S Dublin 02	treet	Network: Catchment 2 Dirk Kotze 31/05/2021				19.253 Holy Cross Lands Clonliffe		
				M	<u>lanhole </u>	Schedule					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	5	Link	IL (m)	Dia (mm)
	S13.1	716335.929	736381.964	10.150	4.350	1200	Č				
	S13.0	716341.324	736399.374	7.215	1.565	1200	\oint	0 1	13 13	5.800 5.650	225 225
	S15.4	716343.131	736405.203	7.275	1.725	1200	1 [′]	0 1 1 1 2 1	13.001 13.001 11.007	5.650 5.550 5.550	225 225 300
	S15.5	716362.476	736400.459	7.090	1.790	1200		0 1	11.008 11.008	5.550 5.300	300 300
	S15.6	716392.541	736390.421	6.766	2.066	1200	1	0 1	11.009 11.009	5.300 5.000	<u>300</u> 300
	S14.0	716385.349	736383.865	7.201	2.511	1200	()→0	0 1	11.01	4.700	300
	S6.12	716408.826	736383.203	6.790	2.334	1500	2 1 3	0 1 2 2 3 2	12 12 11.01 1.012	4.690 4.603 4.606 4.606	375 375 300 375
	S6.13	716429.891	736460.955	5.380	1.830	1200	<pre></pre>		1.013	4.456 3.550 3.550	225
	S6.14	716462.796	736494.860	4.855	1.840	1200	1 / P	1 1	1.014	3.015	225
	DSD2	716466.877	736499.692	4.720	2.005	1200	1	1 1	1.015	2.715	225
				<u>Si</u>	Setting	<u>i</u>					
		Rainfall M Ar	Methodology FSR Region M5-60 (mm) Ratio-R Summer CV nalysis Speed	FSR Scotland a 16.100 0.278 1.000 Detailed	and Irela	Skip Steady State x and Drain Down Time (mins) 240 Additional Storage (m³/ha) 20.0 Check Discharge Rate(s) x Check Discharge Volume x					
		15 60 30 120	50 2 40 2	2160 4320 2880 5760	7 8	200 640	10080				

Barrett Mahony Consulting

File: Clonliffe Network 2021-05

Page 9

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

	Barrett Mah	ony Consulting	File: Clonliffe Ne	etwork 2021-05	Page 10
	Engineers Lt	d.	Network: Catch	ment 2	19.253
	52-54 Lowe	r Sandwith Street	Dirk Kotze		Holy Cross Lands
	Dublin 02		31/05/2021		Clonliffe
Re	eturn Period	Climate Change	Additional Area	Additional Flo	w
	(years)	(00%)	(A %)	(Q %)	0
	5	20	0		0
	30	20	0		0
	100	20	0		0
	<u> </u>	Node S6.1 Online	Hydro-Brake [®] Cont	trol	
F	lap Valve x		Objective	(HE) Minimise	upstream storage
Replaces Downstr	eam Link 🗸	/	Sump Available	\checkmark	-
Invert	Level (m) 5	.950	Product Number	CTL-SHE-0064-	2000-1200-2000
Design D)epth (m) 1	.200 Min Ou	utlet Diameter (m)	0.100	
Design	Flow (l/s) 2	.0 Min No	de Diameter (mm)	1200	
	<u> </u>	Node S2.0 Online	Hydro-Brake [®] Cont	trol	
FI	ap Valve x		Objective	(HE) Minimise	upstream storage
Replaces Downstre	eam Link 🛛 🗸		Sump Available	\checkmark	
Invert L	.evel (m) 10	0.500	Product Number	CTL-SHE-0064	-2000-1200-2000
Design D	epth (m) 1.	200 Min O	utlet Diameter (m)	0.100	
Design F	low (l/s) 2.	0 Min No	de Diameter (mm)	1200	
	<u> </u>	Node S7.0 Online	Hydro-Brake [®] Cont	trol	
		I.		/	
F	lap Valve x		Objective	(HE) Minimise	upstream storage
Replaces Downstr	eam Link 🗸		Sump Available	\checkmark	
Invert	Level (m) 6	.985	Product Number	CTL-SHE-0064-	2000-1200-2000
Design D	epth (m) 1	.200 Min Ou	utlet Diameter (m)	0.100	
Design	Flow (l/s) 2	.0 Min No	de Diameter (mm)	1200	
	<u>1</u>	lode S10.0 Online	e Hydro-Brake [®] Con	<u>trol</u>	
r			Objective	(HE) Minimica	unctroam storage
F Dankara Daviest	lap valve x	,	Objective	(HE) MINIMISE	upstream storage
Replaces Downstr	eam Link 🗸		Sump Available		
Invert	Level (m) 6	.750	Product Number	CIL-SHE-0064-	2000-1200-2000
Design D	epth (m) 1	.200 Min Ou	itlet Diameter (m)	0.100	
Design	Flow (I/s) 2	.0 Min No	de Diameter (mm)	1200	
	<u>1</u>	lode S11.0 Online	e Hydro-Brake® Con	<u>itrol</u>	
F	ilan Valve 🗸		Ohiective	(HF) Minimise	unstream storage
Renlaces Downstr	eam Link	/	Sumn Available		
Invort		500	Broduct Number		2000 1500 2000
	Level (III) 0	.500 Min O	ribuuct Nullibei	0.075	2000-1300-2000
Design L	$r = (1/2)^2$		itiet Diameter (m)	0.075	
Design	Flow (I/s) 2	.0 Min No	de Diameter (mm)	1200	
	<u>1</u>	Node S6.12 Online	e Hydro-Brake [®] Con	<u>itrol</u>	
F	lap Valve x		Obiective	(HE) Minimise	upstream storage
Renlaces Downstr	eam Link	/	Sumn Available	\checkmark	
Invort		456	Product Number	• СТІ_SHF_0140	1150-2000-1150
	cever(m) = 4		itlat Diamatar (m)		1190-2000-1190
Design L	reput (III) = 2		he Diameter (mm)	1500	
Design	FIUW (1/S) 1		ie Diameter (mm)	1200	

End to the structure in the struct		Barrett Mahony Consulti	ng File: Clonliffe N	Network 2021-05	Page 11						
Control Strat Dork Strat Dirk Strat Strat Dine Di		Engineers Ltd.	Network: Cato	19.253							
Index S20.0 Online Hydro-Brake* Control Node S20.0 Online Hydro-Brake* Control Replaces Downstream Link Sump Available And S20.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Node S12.0 Online Hydro-Brake* Control Replaces Downstream Link Objective (HE) Minimise upstream storage Sump Available Jumet Level (m) 6.600 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.075 Design Flow (Vs) 2.0 Min Outlet Diameter (m) 0.000 <	CIVIL & STRUCTURAL	52-54 Lower Sandwith St	reet Dirk Kotze		Holy Cross Lands						
Determine the constraint of the const			31/05/2021	Cioniine							
Field Value Replaces Downstream Link Invert Level (m) Bisign Depth (m) 1.500 Design Flow (l/s) Design Flow (l/s) 2.00Objective Sum Available Min Outlet Diameter (m) Min Outlet Diameter (m) Diameter (m) Min Outlet Diameter (m) Diameter		<u>Node S20.0 O</u>	nline Hydro-Brake [®] Co	ontrol							
Replaces Downstream Link Sump Available <	I	Flap Valve x	Objective	e (HE) Minimise	upstream storage						
Invert Level (m) 5.00 Design Depth (m) Product Number Min Outlet Diameter (m) 0.075 Min Node Diameter (m) Main Soute Diameter (m) 0.075 Min Node Diameter (m) 0.075 Min Node Diameter (m) Tepp Valve x Objective (HE) Minimise upstream storage Min Node Diameter (m) 0.075 Min Node Diameter (m) 0.075 Min Node Diameter (m) 0.075 Min Node Diameter (m) Design Flow (l/s) 2.0 Min Outlet Diameter (m) 0.075 Min Node Diameter (m) 0.075 Min Node Diameter (m) Min Node Diameter (m) 0.000 Design Flow (l/s) 2.0 Min Outlet Diameter (m) 0.000 Distign Depth (m) Min Outlet Diameter (m) 0.000 Design Flow (l/s) 2.0 Min Outlet Diameter (m) 0.000 Distign Depth (m) 0.000 Distign Depth (m) 0.0000 Min Node Diameter (m) 0.000 Design Flow (l/s) 2.0 Min Outlet Diameter (m) 0.000 Min Outlet Diameter (m) 0.000 Design Flow (l/s) 2.0 Min Outlet Diameter (m) 0.000 Min Outlet Diameter (m) 0.000 Design Flow (l/s) 0.0000 Safety Factor 2.0 Invert Level (m) 5.95 Side Inf Coefficient (m/hr) <th>Replaces Downst</th> <td>ream Link √</td> <td>Sump Available</td> <td>e √</td> <td></td>	Replaces Downst	ream Link √	Sump Available	e √							
Design Peth (m) 1.500 Min Outlet Diameter (m) 0.075 Min Outlet Diameter (m) 1.200 Design Peth (m) Tepp Valve x Sump Available Min Outlet Diameter (m) 0.075 Design Depth (m) 1.500 Design Depth (m) 1.500 Design Peth (m) 5.500 Design Depth (m) 0.00000 Safety Factor 2.00 1000-0000000 Design Peth (m) 0.000000 Design Peth (m) 0.00000	Invert	Level (m) 8.500	Product Number	CTL-SHE-0061-	2000-1500-2000						
Design Flow (/s) 2.0 Min Node Diameter (mm) 1200 Decase 20 control Sump Available Sump Availa	Design	Depth (m) 1.500 M	lin Outlet Diameter (m)	0.075							
Fig VarSObjectiv(H) Minimise upstream storageSump AvailableYroduct NumberCL-SHE-0061-2000-1500-2000Disper Flow (Vs)2.00Objectiv(H) Minimise upstream storageFig VarNode Diameter (m)1200The targe of the minimise upstream storageSump Available(H) Minimise upstream storageFig VarNode Diameter (m)1200The targe of the minimise upstream storageSump Available(H) Minimise upstream storageMinimet Level (m)S.500Sump Available(H) Minimise upstream storageDigit River (Level (m)S.500Sump Available(H) Minimise upstream storageMinimet Coefficient (m/hr)0.0000Safety Factor2.0Minimet Coefficient (m/hr)0.00000Safety Factor2.0Digit M areaInf AreaInf AreaInf AreaMinimet Coefficient (m/hr)0.00000Safety Factor2.0Direct Level (m)0.00000Safety Factor2.0Direct Minimet Coefficient (m/hr)0.00000Safety Factor2.0 <th>Design</th> <td>Flow (l/s) 2.0 Min</td> <td>n Node Diameter (mm)</td> <td>1200</td> <td></td>	Design	Flow (l/s) 2.0 Min	n Node Diameter (mm)	1200							
Flap Valve x Dijective (HE) Minimise upstream storage Product Number CTL-SHE-0061-2000-1500-2000 Design Flow (V/s) 2.0 Min Node Diameter (m) 1200 Diget (m) 1.000 Diget (m) 0.050 Design Flow (V/s) 2.0 Diget (m) Min Node Diameter (mm) 1200 Diget (m) Invert Level (m) 5.650 Design Flow (V/s) 2.0 Min Node Diameter (m) 1200 Min Mode Diameter (m) Design Flow (V/s) 2.0 Min Node Diameter (m) 1200 Min Mode Diameter (m) Design Flow (V/s) 2.0 Min Mode Diameter (m) Design Flow (V/s) 2.0 Min Minimise upstream storage Sump Available / Invert Level (m) 5.950 Design Flow (V/s) 2.00 Min Node Diameter (mm) 1.201 0.0 Sump Available / Min Mode Diameter (mm) 1.201 0.0		<u>Node S12.0 O</u>	online Hydro-Brake [®] Co	ontrol							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Objective		unstroom storage						
Invert Level (m)8.600 Product NumberCTL-SHE-0061-2000-1500-2000 Min Outlet Diameter (m) 0.075Design Depth (m)1.500 Design Flow (l/s)Node S13.0 Online Hydro-Brake* ControlMode S13.0 Online Hydro-Brake* ControlNode S13.0 Online Hydro-Brake* ControlMin Outlet Diameter (m)1200Design Depth (m)1.000Min Outlet Diameter (m)0.100Design Flow (l/s)2.0Min Node Diameter (m)1.200Dising I Flow (l/s)2.0Min Node Diameter (m)1.200Design Flow (l/s)2.0Safety Factor2.0Invert Level (m)Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)10.500DepthAreaInfArea (m)DepthAreaInfArea (m)DepthAreaInfArea (m)DepthAreaInfArea (m)DepthAreaInfArea (m)DepthAreaInfArea (m)DepthAreaInfArea DepthAreaInfArea (m)DepthAreaInfArea 	Poplacos Downst	room Link	Objective Sump Available	e (HE) Minimise	upstream storage						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Replaces Downst		Sump Available		2000 1500 2000						
Design Deput (in) Design Flow (i/s)1.500 Min Node Diameter (ini) Min Node Diameter (ini) Diameter (ini) 		Level (III) 6.000	Product Number		2000-1300-2000						
$\begin{aligned} \begin{array}{c c c c c c c c c c c c c c c c c c c $	Design	Elow(I/s) = 2.0 Mi	n Node Diameter (m)	1200							
Determining the set of the	Design		in Node Diameter (inin)	1200							
Flap Valve Replaces Downstream Link Invert Level (m) Design Flow (l/s) Design Flow (l/s)Objective Side Design Flow (l/s)Objective Side Inf Area Inf Ar		<u>Node \$13.0 O</u>	online Hydro-Brake [®] Co	ontrol							
Replaces Downstream Link \checkmark Sump Available \checkmark Product Number CTL-SHE-0067-2000-1000-2000 Min Outlet Diameter (m) 0.100 Min Node Diameter (mm) 1200Design Prlow (I/s) 2.0Sump Available \checkmark Product Number CTL-SHE-0067-2000-1000-2000 Min Node Diameter (mm) 1200Design Flow (I/s) 2.0Nin Outlet Diameter (m) 0.100 Min Node Diameter (mm) 1200Depth /Area Storage StructureBase Inf Coefficient (m/hr)0.00000 0.0000Safety Factor 2.0 Porosity 0.95Invert Level (m) 5.950 Time to half empty (mins)Depth Area Inf Area (m) (m ²) (m ²) 0.000Depth Area Inf Area (m) (m ²) (m ²) 1.200Depth Area Inf Area (m) (m ²) (m ²) 1.201Depth Area Inf Area (m) (m ²) (m ²) 1.201Depth Area Inf Area (m) (m ²) (m ²) 1.201Depth Area Inf Area (m) (m ²) (m ²) 1.201Depth Area Inf Area (m) (m ²) (m ²) 1.201Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²)Depth Area Inf Area (m) (m ²) (m ²) <t< td=""><th>I</th><td>Flap Valve x</td><td>Objective</td><td>e (HE) Minimise</td><td>upstream storage</td></t<>	I	Flap Valve x	Objective	e (HE) Minimise	upstream storage						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Replaces Downst	ream Link √	Sump Available	e √							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Invert	Level (m) 5.650	Product Number	CTL-SHE-0067-	2000-1000-2000						
Design Flow (l/s) 2.0 Min Node Diameter (mm) 1200 Node S6.1 Depth/Area Storage Structure Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 5.950 Depth Area Inf Area Porosity 0.95 Time to half empty (mins) 5.950 Depth Area Inf Area Depth Area Inf Area (m) (m²) (m²) 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0	Design I	Depth (m) 1.000 M	lin Outlet Diameter (m)	0.100							
Hode S6.1 Depth/Area Storage StructureBase Inf Coefficient (m/hr) 0.0000 $Safety Factor2.0PorosityIm e to half empty (mins)5.950Moreat Lowell (m/hr)0.0000Safety Factor2.01.200Im e to half empty (mins)5.950Moreat Lowell (m/hr)Moreat0.000Moreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.0000Safety Factor2.0PorosityMoreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.00000Safety Factor2.0PorosityMoreat1.000Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.000000.00000Safety Factor2.0PorosityMoreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.000001.200Safety Factor2.01.200Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.000001.200Safety Factor2.01.200Moreat1.000Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)0.000001.2000Safety Factor2.01.200Moreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat1.200Moreat Lowell (m/hr)Moreat1.200Moreat1$	Design	Flow (I/s) 2.0 Min	n Node Diameter (mm)	1200							
Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 PorosityInvert Level (m) 5.950 Depth (m)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Invert Level (m) (m²) 1.201 0.0 0.0 Base Inf Coefficient (m/hr) 0.00000 Safety Factor Porosity 2.0 (m²)Invert Level (m) Time to half empty (mins) 10.500 Time to half empty (mins) 10.500 Time to half empty (mins)Depth (m)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Invert Level (m) (m²) 10.500 Time to half empty (mins)Depth (m)Area (m²)Inf Area (m²)Depth (m²)Invert Level (m) (m²) 10.500 Time to half empty (mins)Depth (m) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²)Depth (m) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²)Depth (m) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²)Depth (m) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²)$ (m²) $(m²$	Node S6.1 Depth/Area Storage Structure										
Depth (m)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Inf Area (m²)Invert Level (m) (m10)10.500Base Inf Coefficient (m/hr)0.00000Safety Factor (m²)2.0Invert Level (m) (m²)10.500Depth (m)Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Depth (m)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Base Inf Coefficient (m/hr)0.00000 0.00000Safety Factor Porosity2.0 0.95Invert Level (m) Inwert Level (m)6.985 Time to half empty (mins)Depth Area (m)Inf Area (m/n²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Depth (m)Area (m?)Inf Area (m?)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Inf Area (m²)Depth (m)Inf Area (m?)Inf Area (m²)Inf Area (m²)	Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 5.950 Side Inf Coefficient (m/hr) 0.00000 Porosity 0.95 Time to half empty (mins)										
Depth (m)Area (m2)Inf Area (m2)Depth 					_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth	Area Inf Area Dept	h Area Inf Area	Depth Area	Inf Area						
Node S2.0 Depth/Area Storage Structure Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 10.500 Depth Area Inf Area Depth Area Inf Area Depth Area Inf Area (m) (m²) (m²) Depth Area Inf Area Depth Area Inf Area (m) (m²)	(m)	(m²) (m²) (m)	(m²) (m²)	(m) (m ²)	(m²)						
Node S2.0 Depth/Area Storage StructureBase Inf Coefficient (m/hr)0.0000Safety Factor2.0Invert Level (m)10.500Side Inf Coefficient (m/hr)0.0000Porosity1.00Time to half empty (mins)10.500DepthAreaInf AreaDepthAreaInf AreaMf AreaInf Area(m)(m²)(m²)(m²)(m²)(m²)(m²)(m²)0.000168.30.01.200168.30.01.2010.00.0Node S7.0 Depth/Area Storage StructureBase Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)6.985Side Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)6.985DepthAreaInf AreaInf AreaInf AreaInf AreaInf Area(m)(m²)(m²)(m²)(m²)(m²)(m²)0.000103.50.01.200103.50.01.2010.0Node S1.0 Depth/Area Storage Structure	0.000	180.0 0.0 1.20	0 180.0 0.0	1.201 0.0	0.0						
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0 PorosityInvert Level (m)10.500Depth (m)Area (m2)Inf Area (m2)Depth (m2)Area (m2)Inf Area (m2)Depth (m2)Area (m2)Inf Area (m2)0.000168.30.01.200168.30.01.2010.00.0Node S7.0 Depth/Area Storage StructureBase Inf Coefficient (m/hr)0.00000Safety Factor2.0 (m2)Invert Level (m) 1.2016.985Side Inf Coefficient (m/hr)0.00000Safety Factor2.0 (m2)Invert Level (m) (m3)6.985Depth Area (m)Area (m2)Inf Area (m2)Inf Area (m2)Inf Area (m2)Inf Area (m2)Inf Area (m2)Depth (m0)103.50.0103.50.01.2000.0Node S10.0 Depth/Area Storage Structure		<u>Node S2.0 De</u>	pth/Area Storage Stru	<u>cture</u>							
Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins) Depth Area Inf Area (m) Inf Area (m2) Depth Area (m) Inf Area (m2) Inf Area (m2) Inf Area (m2) Inf Area (m2) Depth Area (m2) Inf Area (m2)	Base Inf Coefficier	it (m/hr) 0.00000 Sa	afety Factor 2.0	Invert I	Level (m) 10.500						
Depth (m)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Depth (m²)Area (m²)Inf Area (m²)Inf Area (m²) <t< td=""><th>Side Inf Coefficien</th><td>t (m/hr) 0.00000</td><td>Porosity 1.00</td><td>Time to half emp</td><td>ty (mins)</td></t<>	Side Inf Coefficien	t (m/hr) 0.00000	Porosity 1.00	Time to half emp	ty (mins)						
Login Index Index Login Index Index <th< td=""><th>Denth</th><td>Area Inf Area Dept</td><td>h Area Inf Area</td><td>Depth Area</td><td>Inf Area</td></th<>	Denth	Area Inf Area Dept	h Area Inf Area	Depth Area	Inf Area						
(m) ((m)	(m ²) (m ²) (m)	(m ²) (m ²)	(m) (m ²)	(m ²)						
Node S7.0 Depth/Area Storage StructureBase Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)6.985Side Inf Coefficient (m/hr)0.00000Porosity0.95Time to half empty (mins)Depth Area Inf Area(m)(m²)(m²)(m²)(m²)0.000103.50.01.200103.50.01.2010.00.0Node S10.0 Depth/Area Storage Structure	0.000	168.3 0.0 1.20	0 168.3 0.0	1.201 0.0	0.0						
Node S7.0 Depth/Area Storage StructureBase Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)6.985Side Inf Coefficient (m/hr)0.00000Porosity0.95Time to half empty (mins)Depth Area Inf Area(m)(m²)(m²)(m²)(m²)0.000103.50.01.200103.50.01.2010.0Node S10.0 Depth/Area Storage Structure		· · · ·		1							
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)6.985Side Inf Coefficient (m/hr)0.00000Porosity0.95Time to half empty (mins)DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m²)(m²)(m²)0.000103.50.01.200103.50.01.201Node S10.0 Depth/Area Storage Structure		<u>Node S7.0 De</u>	pth/Area Storage Stru	<u>cture</u>							
DepthAreaInf AreaDepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m²)(m²)(m²)(m²)(m²)0.000103.50.01.200103.50.01.2010.00.0Node S10.0 Depth/Area Storage Structure	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 Sa nt (m/hr) 0.00000	afety Factor 2.0 Porosity 0.95	Invert Time to half emp	Level (m) 6.985 oty (mins)						
(m) (m²) (m) (m²) (m) (m²) (m²) 0.000 103.5 0.0 1.200 103.5 0.0 1.201 0.0 0.0 Node S10.0 Depth/Area Storage Structure	Depth	Area Inf Area Dept	h Area Inf Area	Depth Area	Inf Area						
0.000 103.5 0.0 1.200 103.5 0.0 1.201 0.0 0.0 <u>Node S10.0 Depth/Area Storage Structure</u>	(m)	(m²) (m²) (m)	(m²) (m²)	(m) (m²)	(m²)						
Node S10.0 Depth/Area Storage Structure	0.000	0.0 1.20	0 103.5 0.0	1.201 0.0	0.0						
		<u>Node \$10.0 D</u>	epth/Area Storage Stru	<u>ucture</u>							
Deco lof Coofficient (m/br) 0.00000 Cafaty Factor 2.0		nt (m /hr) 0.00000	ofoty Factor 2.0	· ·	$L_{\rm avel}(m) = C Z C Q$						
Base Int Coefficient (m/nr) UUUUUU Safety Factor 2.0 Invert Level (m) 6.750	Base Inf Coefficien	nt (m/nr) 0.00000 S	alety Factor 2.0	Invert	Level (m) 6.750						
Side ini Coenicient (m/m) 0.00000 Porosity 0.95 Time to nair empty (mins) 140	Side Int Coemciel	it (iii/iii) 0.00000	Porosity 0.95	nine to nair emp	λιγ (ΠΠΠS) 140						

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consul Engineers Ltd. 52-54 Lower Sandwith Dublin 02	lting File: Clonliffe Network: Cato Street Dirk Kotze 31/05/2021	Network 2021-05 Page 12 chment 2 19.253 Holy Cro Clonliffe	oss Lands					
Depth (m) 0.000	Area Inf Area Dep (m²) (m²) (m²) (n 28.0 0.0 1.2	pth Area Inf Area n) (m²) (m²) 200 28.0 0.0	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 0.0						
	<u>Node S11.0</u>	Depth/Area Storage Str	<u>ucture</u>						
Base Inf Coefficie Side Inf Coefficie	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Factor 2.0 Porosity 0.95	Invert Level (m Time to half empty (mins	6.500 320					
Depth (m) 0.000	Area Inf Area Dep (m²) (m²) (n 30.0 0.0 1.2	pth Area Inf Area n) (m²) (m²) 200 30.0 0.0	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 0.0						
	<u>Node S14.0</u>	Depth/Area Storage Str	<u>ucture</u>						
Base Inf Coefficie Side Inf Coefficie	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Factor 2.0 Porosity 1.00	Invert Level (m Time to half empty (mins	4.690					
Depth (m) 0.000	Area Inf Area Dep (m²) (m²) (n 469.1 0.0 1.2 1.2 1.2	pth Area Inf Area n) (m²) (m²) 200 469.1 0.0	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 0.0	a)					
Node S20.0 Depth/Area Storage Structure									
Base Inf Coefficie Side Inf Coefficie	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Factor 2.0 Porosity 1.00	Invert Level (m Time to half empty (mins	8.500 288					
Depth (m) 0.000	Area Inf Area Dep (m ²) (m ²) (m ²) (n 45.0 0.0 1.2	pth Area Inf Area n) (m²) (m²) 200 45.0 0.0	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 0.0						
	<u>Node \$12.0</u>	Depth/Area Storage Str	<u>ucture</u>						
Base Inf Coefficie Side Inf Coefficie	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Factor 2.0 Porosity 1.00	Invert Level (m Time to half empty (mins	8.600					
Depth (m) 0.000	Area Inf Area Dep (m²) (m²) (m²) (n 74.1 0.0 1.2	pth Area Inf Area n) (m²) (m²) 200 74.1 0.0	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 0.0						
	<u>Node S13.0</u>	Depth/Area Storage Str	<u>ucture</u>						
Base Inf Coefficie Side Inf Coefficie	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Factor 2.0 Porosity 0.95	Invert Level (m Time to half empty (mins	5.650					
Depth (m) 0.000	Area Inf Area Dep (m²) (m²) (n 116.0 0.0 0.8	pth Area Inf Area n) (m²) (m²) 300 116.0 0.0	Depth Area Inf Area (m) (m ²) (m ²) 0.801 0.0 0.0	a)					

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 13
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

<u>Rainfall</u>

Event	Peak Intensity (mm/br)	Average Intensity (mm/br)	
Event 120% CC 1E minute summer	157 /21	(IIIII/III) // E/0	
5 year $\pm 20\%$ CC 15 minute summer	107.451	20 202	
5 year $\pm 20\%$ CC 50 minute summer	75 120	10 857	
5 year $+20\%$ CC 120 minute summer	48 030	12 693	
5 year +20% CC 180 minute summer	27 927	9 762	
5 year +20% CC 240 minute summer	30 619	2.702 8.002	
5 year +20% CC 360 minute summer	24 099	6 201	
5 year +20% CC 480 minute summer	19 415	5 1 3 1	
5 year +20% CC 600 minute summer	16 189	4 4 2 8	
5 year $+20\%$ CC 720 minute summer	14 646	3 925	
5 year +20% CC 960 minute summer	12 322	3 245	
5 year +20% CC 1440 minute summer	9 253	2 480	
5 year +20% CC 2160 minute summer	6 857	1 895	
5 year +20% CC 2880 minute summer	5.841	1.565	
5 year +20% CC 4320 minute summer	4 573	1 196	
5 year +20% CC 5760 minute summer	3.858	0.988	
5 year +20% CC 7200 minute summer	3.338	0.852	
5 year +20% CC 8640 minute summer	2.957	0.754	
5 year +20% CC 10080 minute summer	2.669	0.681	
30 year +20% CC 15 minute summer	230.533	65.233	
30 year +20% CC 30 minute summer	158.330	44.802	
30 year +20% CC 60 minute summer	110.655	29.243	
30 year +20% CC 120 minute summer	70.393	18.603	
30 year +20% CC 180 minute summer	55.084	14.175	
30 year +20% CC 240 minute summer	44.150	11.667	
, 30 year +20% CC 360 minute summer	34.380	8.847	
, 30 year +20% CC 480 minute summer	27.479	7.262	
30 year +20% CC 600 minute summer	22.768	6.227	
30 year +20% CC 720 minute summer	20.489	5.491	
30 year +20% CC 960 minute summer	17.093	4.501	
30 year +20% CC 1440 minute summer	12.685	3.400	
30 year +20% CC 2160 minute summer	9.288	2.567	
30 year +20% CC 2880 minute summer	7.842	2.102	
30 year +20% CC 4320 minute summer	6.059	1.584	
30 year +20% CC 5760 minute summer	5.061	1.296	
30 year +20% CC 7200 minute summer	4.344	1.108	
30 year +20% CC 8640 minute summer	3.823	0.975	
30 year +20% CC 10080 minute summer	3.432	0.875	
100 year +20% CC 15 minute summer	298.703	84.523	
100 year +20% CC 30 minute summer	206.626	58.468	
100 year +20% CC 60 minute summer	143.868	38.020	
100 year +20% CC 120 minute summer	90.806	23.997	
100 year +20% CC 180 minute summer	70.639	18.178	
100 year +20% CC 240 minute summer	56.367	14.896	
100 year +20% CC 360 minute summer	43.598	11.219	
100 year +20% CC 480 minute summer	34.671	9.163	
100 year +20% CC 600 minute summer	28.612	7.826	
100 year +20% CC 720 minute summer	25.663	6.878	
100 year +20% CC 960 minute summer	21.295	5.608	
100 year +20% CC 1440 minute summer	15.685	4.204	
100 year +20% CC 2160 minute summer	11.399	3.150	
100 year +20% CC 2880 minute summer	9.570	2.565	

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 14
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +20% CC 4320 minute summer	7.332	1.917
100 year +20% CC 5760 minute summer	6.086	1.558
100 year +20% CC 7200 minute summer	5.198	1.326
100 year +20% CC 8640 minute summer	4.555	1.162
100 year +20% CC 10080 minute summer	4.075	1.039

	Barrett Maho	File: Clonliffe Network 2021-05 Page 15									
	Engineers Lto	Networ	k: Catchn	nent 2	19.2	19.253					
	52-54 Lower Sandwith Street			Dirk Ko	Dirk Kotze			Holy Cross Lands			
	Dublin 02			31/05/2	2021		Clon	Clonliffe			
Results for 5 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%											
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status			
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)				
960 minute summer	S2.0	735	11.063	0.563	10.9	97.5021	0.0000	SURCHARGED			
60 minute summer	S2.1	142	9.522	0.022	1.8	0.0251	0.0000	ОК			
120 minute summer	S3.0	330	8.029	0.014	0.0	0.0159	0.0000	ОК			
120 minute summer	S2.2	330	8.029	0.029	1.8	0.0328	0.0000	ОК			
15 minute summer	EX.MH206	1	8.840	0.000	0.0	0.0000	0.0000	ОК			
7200 minute summer	S2.3	4260	7.902	0.028	1.8	0.0322	0.0000	ОК			
960 minute summer	S2.4	480	7.195	0.028	1.8	0.0322	0.0000	ОК			
15 minute summer	S5.0	1	7.750	0.000	0.0	0.0000	0.0000	ОК			
7200 minute summer	S5.1	4260	7.047	0.031	1.8	0.0348	0.0000	ОК			
600 minute summer	S7.0	435	7.511	0.526	9.3	53.6297	0.0000	SURCHARGED			
60 minute summer	S5.2	44	7.021	0.041	3.5	0.0461	0.0000	ОК			
960 minute summer	S6.1	750	6.536	0.586	11.2	102.8600	0.0000	SURCHARGED			
60 minute summer	S6.2	156	5.835	0.035	1.8	0.0399	0.0000	ОК			
15 minute summer	S6.3	10	5.760	0.052	8.6	0.0676	0.0000	ОК			
15 minute summer	S6.4	13	5.774	0.188	10.0	0.2124	0.0000	ОК			
15 minute summer	S6.5	13	5.714	0.186	14.8	0.2106	0.0000	ОК			
15 minute summer	S8.0	10	7.298	0.098	21.4	0.2639	0.0000	ОК			
15 minute summer	S6.8	13	5.731	0.445	66.5	0.7857	0.0000	SURCHARGED			
15 minute summer	1.009:50%	12	5.728	0.588	42.1	2.5876	0.0000	SURCHARGED			
15 minute summer	S9.1	10	8.410	0.140	34.6	0.4340	0.0000	ОК			
15 minute summer	S9.2	10	8.135	0.173	69.3	0.5545	0.0000	ОК			
120 minute summer	S10.0	86	7.136	0.386	9.9	10.9837	0.0000	SURCHARGED			
180 minute summer	S11.0	144	7.089	0.589	10.4	18.0163	0.0000	SURCHARGED			
15 minute summer	S9.3	10	6.792	0.342	70.2	0.3872	0.0000	SURCHARGED			
15 minute summer	S6.9	12	5.688	0.695	87.6	0.7862	0.0000	SURCHARGED			

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute summer	S2.0	Hydro-Brake [®]	S2.1	1.8				
60 minute summer	S2.1	1.001	S2.2	1.8	0.887	0.020	0.0340	
120 minute summer	S3.0	2	S2.2	0.0	-0.023	-0.001	0.0124	
120 minute summer	S2.2	1.002	S2.3	1.8	0.604	0.034	0.0373	
15 minute summer	EX.MH206	3	S2.3	0.0	0.000	0.000	0.0000	
7200 minute summer	S2.3	1.003	S2.4	1.8	0.613	0.034	0.2041	
960 minute summer	S2.4	1.004	S5.1	1.8	0.586	0.034	0.0448	
15 minute summer	S5.0	4	S5.1	0.0	0.000	0.000	0.0000	
7200 minute summer	S5.1	1.005	S5.2	1.8	0.515	0.035	0.0149	
600 minute summer	S7.0	Hydro-Brake [®]	S5.2	1.8				
60 minute summer	S5.2	1.006	S6.4	3.5	0.748	0.066	0.0401	
960 minute summer	S6.1	Hydro-Brake [®]	S6.2	1.8				
60 minute summer	S6.2	6.001	S6.3	1.8	0.596	0.048	0.0824	
15 minute summer	S6.3	6.002	S6.4	8.6	0.942	0.103	0.0986	
15 minute summer	S6.4	1.007	S6.5	14.8	0.821	0.183	0.5042	
15 minute summer	S6.5	1.008	S6.8	23.7	0.688	0.244	1.8354	
15 minute summer	S8.0	7	S6.8	21.4	1.360	0.347	0.2243	
15 minute summer	S6.8	1.009	1.009:50%	40.2	0.856	0.319	4.0365	
15 minute summer	S6.8	1.009	S6.9	65.1	0.704	0.516	4.0365	
15 minute summer	S9.1	8	S9.2	34.7	1.176	0.672	0.9179	
15 minute summer	S9.2	8.001	S9.3	68.6	2.184	0.859	0.9520	
120 minute summer	S10.0	Hydro-Brake [®]	S9.3	1.8				
180 minute summer	S11.0	Hydro-Brake [®]	S9.3	1.6				
15 minute summer	S9.3	8.002	S6.9	68.7	1.727	1.401	0.2194	
15 minute summer	S6.9	1.01	S6.10	93.6	1.097	0.744	3.5391	

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 16
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

Results for 5 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	S6.10	12	5.641	0.776	94.4	1.4721	0.0000	SURCHARGED
15 minute summer	S6.11	12	5.595	0.836	98.4	1.0605	0.0000	SURCHARGED
15 minute summer	S19.0	10	10.476	0.026	1.4	0.0320	0.0000	ОК
15 minute summer	S19.1	11	9.647	0.040	3.0	0.0493	0.0000	ОК
15 minute summer	S19.2	10	9.574	0.126	5.6	0.1601	0.0000	ОК
15 minute summer	S19.3	10	9.560	0.297	47.7	0.7090	0.0000	SURCHARGED
480 minute summer	S12.0	360	9.146	0.546	9.2	41.0427	0.0000	SURCHARGED
15 minute summer	S15.0	10	8.427	0.027	2.0	0.0330	0.0000	ОК
360 minute summer	S20.0	248	8.967	0.467	7.6	21.9322	0.0000	SURCHARGED
15 minute summer	S15.1	10	7.749	0.045	6.6	0.0567	0.0000	ОК
15 minute summer	S15.2	10	7.062	0.062	16.4	0.0855	0.0000	ОК
15 minute summer	S15.3	10	6.083	0.083	22.4	0.1143	0.0000	ОК
15 minute summer	S13.1	10	6.038	0.238	50.3	0.4616	0.0000	SURCHARGED
480 minute summer	S13.0	328	5.999	0.349	9.5	38.8655	0.0000	SURCHARGED
15 minute summer	S15.4	10	5.651	0.101	28.8	0.1368	0.0000	ОК
15 minute summer	S15.5	12	5.634	0.334	31.1	0.4194	0.0000	SURCHARGED
15 minute summer	S15.6	12	5.584	0.884	37.9	1.1624	0.0000	SURCHARGED
2160 minute summer	S14.0	1560	5.206	0.516	11.5	242.8291	0.0000	SURCHARGED
15 minute summer	S6.12	12	5.566	1.110	126.2	2.1703	0.0000	SURCHARGED
15 minute summer	S6.13	17	3.624	0.074	11.5	0.0834	0.0000	ОК
240 minute summer	S6.14	264	3.067	0.052	11.5	0.0590	0.0000	ОК
240 minute summer	DSD2	264	2.763	0.048	11.5	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S6.10	1.011	S6.11	98.0	1.113	0.768	2.8526	
15 minute summer	S6.11	1.012	S6.12	107.6	0.980	0.607	2.1454	
15 minute summer	S19.0	11	S19.1	1.3	0.464	0.066	0.1944	
15 minute summer	S19.1	11.001	S19.2	2.8	0.520	0.155	0.1493	
15 minute summer	S19.2	11.002	S19.3	7.7	0.525	0.427	0.3006	
15 minute summer	S19.3	11.003	S12.0	46.9	1.202	2.570	0.3766	
480 minute summer	S12.0	Hydro-Brake®	S15.2	1.6				
15 minute summer	S15.0	14	S15.1	2.0	0.754	0.030	0.0473	
360 minute summer	S20.0	Hydro-Brake®	S15.1	1.6				
15 minute summer	S15.1	14.001	S15.2	6.5	0.761	0.050	0.4516	
15 minute summer	S15.2	11.006	S15.3	16.1	1.236	0.094	0.5517	
15 minute summer	S15.3	11.007	S15.4	21.8	1.222	0.168	0.6009	
15 minute summer	S13.1	13	S13.0	50.4	1.883	1.069	0.4985	
480 minute summer	S13.0	Hydro-Brake®	S15.4	2.0				
15 minute summer	S15.4	11.008	S15.5	28.5	1.287	0.228	0.8888	
15 minute summer	S15.5	11.009	S15.6	32.3	1.151	0.299	2.2320	
15 minute summer	S15.6	11.01	S6.12	37.1	0.594	0.461	1.2544	
2160 minute summer	S14.0	12	S6.12	-11.5	-0.253	-0.095	2.5904	
15 minute summer	S6.12	Hydro-Brake®	S6.13	11.5				
15 minute summer	S6.13	1.014	S6.14	11.5	1.268	0.208	0.4310	
240 minute summer	S6.14	1.015	DSD2	11.5	1.748	0.101	0.0416	306.7

 Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 17
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
960 minute summer	S2.0	795	11.367	0.867	15.1	150.1690	0.0000	SURCHARGED
15 minute summer	S2.1	18	9.522	0.022	1.8	0.0251	0.0000	ОК
30 minute summer	S3.0	20	8.029	0.014	0.1	0.0158	0.0000	ОК
15 minute summer	S2.2	16	8.029	0.029	1.8	0.0328	0.0000	ОК
15 minute summer	EX.MH206	1	8.840	0.000	0.0	0.0000	0.0000	ОК
15 minute summer	S2.3	14	7.902	0.028	1.8	0.0322	0.0000	ОК
15 minute summer	S2.4	17	7.195	0.028	1.8	0.0322	0.0000	ОК
15 minute summer	S5.0	1	7.750	0.000	0.0	0.0000	0.0000	ОК
10080 minute summer	S5.1	6420	7.047	0.031	1.8	0.0345	0.0000	ОК
720 minute summer	S7.0	540	7.812	0.827	11.8	84.3250	0.0000	SURCHARGED
15 minute summer	S5.2	18	7.021	0.041	3.5	0.0461	0.0000	ОК
1440 minute summer	S6.1	1080	6.846	0.896	11.6	157.2680	0.0000	SURCHARGED
15 minute summer	S6.2	12	6.121	0.321	1.8	0.3627	0.0000	SURCHARGED
15 minute summer	S6.3	12	6.132	0.424	21.2	0.5492	0.0000	SURCHARGED
15 minute summer	S6.4	12	6.128	0.542	26.0	0.6135	0.0000	SURCHARGED
15 minute summer	S6.5	12	6.130	0.602	40.9	0.6808	0.0000	SURCHARGED
15 minute summer	S8.0	10	7.323	0.123	31.4	0.3338	0.0000	ОК
15 minute summer	S6.8	13	6.100	0.814	111.6	1.4383	0.0000	SURCHARGED
15 minute summer	1.009:50%	13	6.102	0.963	65.5	6.9315	0.0000	SURCHARGED
15 minute summer	S9.1	11	8.707	0.437	50.6	1.3552	0.0000	SURCHARGED
15 minute summer	S9.2	11	8.444	0.482	96.3	1.5427	0.0000	SURCHARGED
180 minute summer	S10.0	140	7.406	0.656	11.3	18.6904	0.0000	SURCHARGED
240 minute summer	S11.0	188	7.444	0.944	12.1	28.8733	0.0000	SURCHARGED
15 minute summer	S9.3	11	6.913	0.463	89.2	0.5240	0.0000	SURCHARGED
15 minute summer	S6.9	13	6.056	1.063	106.2	1.2023	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute summer	S2.0	Hydro-Brake®	S2.1	1.8				
15 minute summer	S2.1	1.001	S2.2	1.8	0.887	0.020	0.0340	
30 minute summer	S3.0	2	S2.2	-0.1	-0.064	-0.003	0.0124	
15 minute summer	S2.2	1.002	S2.3	1.8	0.625	0.034	0.0373	
15 minute summer	EX.MH206	3	S2.3	0.0	0.000	0.000	0.0000	
15 minute summer	S2.3	1.003	S2.4	1.8	0.660	0.034	0.2043	
15 minute summer	S2.4	1.004	S5.1	1.8	0.589	0.034	0.0448	
15 minute summer	S5.0	4	S5.1	0.0	0.000	0.000	0.0000	
10080 minute summer	S5.1	1.005	S5.2	1.8	0.523	0.035	0.0150	
720 minute summer	S7.0	Hydro-Brake [®]	S5.2	1.8				
15 minute summer	S5.2	1.006	S6.4	3.5	0.749	0.066	0.0401	
1440 minute summer	S6.1	Hydro-Brake [®]	S6.2	1.8				
15 minute summer	S6.2	6.001	S6.3	8.7	0.596	0.235	0.7185	
15 minute summer	S6.3	6.002	S6.4	22.5	1.031	0.270	0.1900	
15 minute summer	S6.4	1.007	S6.5	30.6	0.893	0.379	0.7691	
15 minute summer	S6.5	1.008	S6.8	42.1	0.718	0.433	2.2215	
15 minute summer	S8.0	7	S6.8	31.4	1.489	0.509	0.3006	
15 minute summer	S6.8	1.009	1.009:50%	-66.7	0.903	-0.529	4.0365	
15 minute summer	S6.8	1.009	S6.9	85.4	0.856	0.677	4.0365	
15 minute summer	S9.1	8	S9.2	45.8	1.201	0.887	1.2424	
15 minute summer	S9.2	8.001	S9.3	87.6	2.245	1.096	1.2058	
180 minute summer	S10.0	Hydro-Brake [®]	S9.3	1.8				
240 minute summer	S11.0	Hydro-Brake [®]	S9.3	1.6				
15 minute summer	S9.3	8.002	S6.9	88.8	2.233	1.811	0.2209	
15 minute summer	S6.9	1.01	S6.10	113.1	1.081	0.899	3.5391	

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 18
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	S6.10	13	5.946	1.081	113.8	2.0499	0.0000	SURCHARGED
15 minute summer	S6.11	12	5.875	1.116	119.8	1.4151	0.0000	SURCHARGED
15 minute summer	S19.0	10	10.482	0.032	2.1	0.0393	0.0000	ОК
15 minute summer	S19.1	11	9.725	0.118	5.1	0.1461	0.0000	ОК
15 minute summer	S19.2	11	9.711	0.263	10.3	0.3333	0.0000	SURCHARGED
15 minute summer	S19.3	10	9.686	0.423	66.6	1.0084	0.0000	SURCHARGED
480 minute summer	S12.0	392	9.450	0.850	13.1	63.9089	0.0000	SURCHARGED
15 minute summer	S15.0	10	8.432	0.032	2.9	0.0396	0.0000	ОК
360 minute summer	S20.0	272	9.264	0.764	10.8	35.9034	0.0000	SURCHARGED
15 minute summer	S15.1	10	7.757	0.053	9.0	0.0665	0.0000	ОК
15 minute summer	S15.2	10	7.073	0.073	23.1	0.1017	0.0000	ОК
15 minute summer	S15.3	10	6.101	0.101	31.9	0.1391	0.0000	ОК
15 minute summer	S13.1	10	6.326	0.526	73.7	1.0197	0.0000	SURCHARGED
480 minute summer	S13.0	384	6.214	0.564	13.1	62.7581	0.0000	SURCHARGED
15 minute summer	S15.4	12	5.907	0.357	41.5	0.4818	0.0000	SURCHARGED
15 minute summer	S15.5	12	5.881	0.581	39.4	0.7285	0.0000	SURCHARGED
15 minute summer	S15.6	12	5.846	1.146	52.4	1.5074	0.0000	SURCHARGED
2160 minute summer	S14.0	1980	5.556	0.866	15.3	407.1048	0.0000	SURCHARGED
15 minute summer	S6.12	12	5.819	1.363	177.2	2.6666	0.0000	SURCHARGED
15 minute summer	S6.13	17	3.624	0.074	11.5	0.0834	0.0000	ОК
15 minute summer	S6.14	18	3.067	0.052	11.5	0.0590	0.0000	ОК
15 minute summer	DSD2	18	2.763	0.048	11.5	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S6.10	1.011	S6.11	119.0	1.104	0.932	2.8526	
15 minute summer	S6.11	1.012	S6.12	124.5	1.129	0.702	2.1454	
15 minute summer	S19.0	11	S19.1	2.0	0.462	0.100	0.5907	
15 minute summer	S19.1	11.001	S19.2	8.2	0.540	0.451	0.2487	
15 minute summer	S19.2	11.002	S19.3	12.0	0.697	0.667	0.3165	
15 minute summer	S19.3	11.003	S12.0	64.7	1.628	3.543	0.3958	
480 minute summer	S12.0	Hydro-Brake [®]	S15.2	1.6				
15 minute summer	S15.0	14	S15.1	2.9	0.842	0.043	0.0616	
360 minute summer	S20.0	Hydro-Brake [®]	S15.1	1.6				
15 minute summer	S15.1	14.001	S15.2	9.0	0.830	0.070	0.5742	
15 minute summer	S15.2	11.006	S15.3	22.7	1.345	0.133	0.7169	
15 minute summer	S15.3	11.007	S15.4	32.2	1.252	0.247	1.4625	
15 minute summer	S13.1	13	S13.0	73.5	2.069	1.560	0.6703	
480 minute summer	S13.0	Hydro-Brake®	S15.4	2.0				
15 minute summer	S15.4	11.008	S15.5	38.4	1.348	0.308	1.4026	
15 minute summer	S15.5	11.009	S15.6	44.7	1.128	0.414	2.2320	
15 minute summer	S15.6	11.01	S6.12	53.5	0.759	0.664	1.2544	
2160 minute summer	S14.0	12	S6.12	-15.3	-0.246	-0.126	2.5904	
15 minute summer	S6.12	Hydro-Brake [®]	S6.13	11.5				
15 minute summer	S6.13	1.014	S6.14	11.5	1.268	0.208	0.4311	
15 minute summer	S6.14	1.015	DSD2	11.5	1.748	0.101	0.0416	168.5

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 19
Engineers Ltd.	Network: Catchment 2	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%

Node Event	US Node	Peak	Level	Depth	Inflow	Node	Flood (m ³)	Status
960 minute summer	S2.0	840	11.627	1.127	18.8	195.3214	0.0000	SURCHARGED
960 minute summer	S2.1	840	9.523	0.023	1.9	0.0263	0.0000	ОК
960 minute summer	S3.0	840	8.030	0.015	0.0	0.0174	0.0000	OK
960 minute summer	S2.2	840	8.030	0.030	1.9	0.0343	0.0000	ОК
15 minute summer	EX.MH206	1	8.840	0.000	0.0	0.0000	0.0000	ОК
1440 minute summer	S2.3	1110	7.904	0.030	1.9	0.0337	0.0000	ОК
960 minute summer	S2.4	825	7.197	0.030	1.9	0.0336	0.0000	ОК
15 minute summer	S5.0	1	7.750	0.000	0.0	0.0000	0.0000	ОК
1440 minute summer	S5.1	1140	7.048	0.032	1.9	0.0361	0.0000	ОК
720 minute summer	S7.0	570	8.075	1.090	14.8	111.1587	0.0000	SURCHARGED
960 minute summer	S5.2	750	7.022	0.042	3.8	0.0479	0.0000	ОК
1440 minute summer	S6.1	1110	7.116	1.166	14.3	204.6271	0.0000	SURCHARGED
15 minute summer	S6.2	13	6.444	0.644	6.3	0.7288	0.0000	SURCHARGED
15 minute summer	S6.3	13	6.414	0.706	17.3	0.9140	0.0000	SURCHARGED
15 minute summer	S6.4	13	6.422	0.836	75.4	0.9457	0.0000	SURCHARGED
15 minute summer	S6.5	13	6.414	0.886	27.0	1.0025	0.0000	SURCHARGED
15 minute summer	S8.0	10	7.347	0.147	40.7	0.3975	0.0000	ОК
15 minute summer	S6.8	12	6.420	1.134	57.7	2.0030	0.0000	SURCHARGED
15 minute summer	1.009:50%	13	6.388	1.249	105.6	11.6606	0.0000	SURCHARGED
15 minute summer	S9.1	11	9.315	1.045	65.6	3.2371	0.0000	FLOOD RISK
15 minute summer	S9.2	11	8.927	0.965	115.1	3.0906	0.0000	FLOOD RISK
240 minute summer	S10.0	176	7.653	0.903	11.6	25.7032	0.0000	SURCHARGED
360 minute summer	S11.0	248	8.531	2.031	12.0	38.4694	0.0000	FLOOD RISK
15 minute summer	S9.3	11	7.049	0.599	108.2	0.6778	0.0000	SURCHARGED
15 minute summer	S6.9	13	6.357	1.364	144.3	1.5429	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute summer	S2.0	Hydro-Brake®	S2.1	1.9				
960 minute summer	S2.1	1.001	S2.2	1.9	0.912	0.022	0.0363	
960 minute summer	S3.0	2	S2.2	0.0	-0.006	0.000	0.0135	
960 minute summer	S2.2	1.002	S2.3	1.9	0.621	0.038	0.0399	
15 minute summer	EX.MH206	3	S2.3	0.0	0.000	0.000	0.0000	
1440 minute summer	S2.3	1.003	S2.4	1.9	0.630	0.037	0.2179	
960 minute summer	S2.4	1.004	S5.1	1.9	0.599	0.037	0.0481	
15 minute summer	S5.0	4	S5.1	0.0	0.000	0.000	0.0000	
1440 minute summer	S5.1	1.005	S5.2	1.9	0.460	0.038	0.0161	
720 minute summer	S7.0	Hydro-Brake [®]	S5.2	1.9				
960 minute summer	S5.2	1.006	S6.4	3.8	0.764	0.071	0.0424	
1440 minute summer	S6.1	Hydro-Brake [®]	S6.2	2.0				
15 minute summer	S6.2	6.001	S6.3	10.0	0.596	0.270	0.7185	
15 minute summer	S6.3	6.002	S6.4	19.1	1.092	0.229	0.1900	
15 minute summer	S6.4	1.007	S6.5	-57.8	0.941	-0.716	0.7691	
15 minute summer	S6.5	1.008	S6.8	53.3	0.824	0.548	2.2215	
15 minute summer	S8.0	7	S6.8	40.7	1.573	0.660	0.3685	
15 minute summer	S6.8	1.009	1.009:50%	73.6	0.881	0.584	4.0365	
15 minute summer	S6.8	1.009	S6.9	101.9	0.933	0.808	4.0365	
15 minute summer	S9.1	8	S9.2	53.0	1.333	1.027	1.2424	
15 minute summer	S9.2	8.001	S9.3	106.9	2.688	1.338	1.1980	
240 minute summer	S10.0	Hydro-Brake [®]	S9.3	1.8				
360 minute summer	S11.0	Hydro-Brake®	S9.3	2.3				
15 minute summer	S9.3	8.002	S6.9	107.0	2.690	2.182	0.2209	
15 minute summer	S6.9	1.01	S6.10	148.6	1.348	1.181	3.5391	

BARRETT MAHONY
CONSULTING ENGINEERS
CIVIL & STRUCTURALBarrett Mahony Consulting
Engineers Ltd.File: Clonliffe Network 2021-05
Network: Catchment 2Page 20Digineers Ltd.Network: Catchment 219.25352-54 Lower Sandwith Street
Dublin 02Dirk KotzeHoly Cross Lands31/05/2021Clonliffe

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.45%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute summer	S6.10	1440	6.240	1.375	24.5	2.6091	0.0000	SURCHARGED
1440 minute summer	S6.11	1440	6.240	1.481	24.7	1.8777	0.0000	SURCHARGED
15 minute summer	S19.0	10	10.487	0.037	2.7	0.0448	0.0000	ОК
15 minute summer	S19.1	11	9.912	0.305	12.7	0.3769	0.0000	SURCHARGED
15 minute summer	S19.2	11	9.890	0.442	12.2	0.5594	0.0000	SURCHARGED
15 minute summer	S19.3	10	9.829	0.566	84.9	1.3504	0.0000	SURCHARGED
480 minute summer	S12.0	424	9.709	1.109	16.5	83.4621	0.0000	SURCHARGED
15 minute summer	S15.0	10	8.437	0.037	3.8	0.0453	0.0000	ОК
360 minute summer	S20.0	288	9.530	1.030	13.7	48.4030	0.0000	SURCHARGED
15 minute summer	S15.1	10	7.764	0.060	11.4	0.0744	0.0000	ОК
15 minute summer	S15.2	10	7.083	0.083	29.1	0.1146	0.0000	ОК
1440 minute summer	S15.3	1440	6.240	0.240	6.0	0.3318	0.0000	ОК
15 minute summer	S13.1	10	6.636	0.836	95.3	1.6211	0.0000	SURCHARGED
480 minute summer	S13.0	416	6.417	0.767	16.7	85.4133	0.0000	SURCHARGED
1440 minute summer	S15.4	1440	6.240	0.690	8.7	0.9320	0.0000	SURCHARGED
1440 minute summer	S15.5	1440	6.240	0.940	9.2	1.1784	0.0000	SURCHARGED
1440 minute summer	S15.6	1440	6.239	1.539	10.0	2.0244	0.0000	SURCHARGED
1440 minute summer	S14.0	1440	6.239	1.549	23.6	564.9069	0.0000	SURCHARGED
1440 minute summer	S6.12	1440	6.239	1.783	35.1	3.4882	0.0000	SURCHARGED
15 minute summer	S6.13	18	3.624	0.074	11.5	0.0834	0.0000	ОК
480 minute summer	S6.14	240	3.067	0.052	11.5	0.0590	0.0000	ОК
480 minute summer	DSD2	240	2.763	0.048	11.5	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
1440 minute summer	S6.10	1.011	S6.11	23.9	0.865	0.188	2.8526	
1440 minute summer	S6.11	1.012	S6.12	24.7	0.770	0.139	2.1454	
15 minute summer	S19.0	11	S19.1	2.6	0.508	0.131	0.7047	
15 minute summer	S19.1	11.001	S19.2	10.6	0.600	0.584	0.2695	
15 minute summer	S19.2	11.002	S19.3	14.7	0.836	0.817	0.3165	
15 minute summer	S19.3	11.003	S12.0	81.3	2.043	4.448	0.4009	
480 minute summer	S12.0	Hydro-Brake [®]	S15.2	1.7				
15 minute summer	S15.0	14	S15.1	3.8	0.911	0.056	0.0746	
360 minute summer	S20.0	Hydro-Brake®	S15.1	1.7				
15 minute summer	S15.1	14.001	S15.2	11.3	0.886	0.088	0.6780	
15 minute summer	S15.2	11.006	S15.3	28.8	1.444	0.168	0.9493	
1440 minute summer	S15.3	11.007	S15.4	6.0	0.803	0.046	2.1448	
15 minute summer	S13.1	13	S13.0	94.3	2.471	2.001	0.7249	
480 minute summer	S13.0	Hydro-Brake®	S15.4	2.0				
1440 minute summer	S15.4	11.008	S15.5	8.7	0.950	0.070	1.4026	
1440 minute summer	S15.5	11.009	S15.6	9.2	0.920	0.085	2.2320	
1440 minute summer	S15.6	11.01	S6.12	9.7	0.536	0.121	1.2544	
1440 minute summer	S14.0	12	S6.12	-23.6	-0.246	-0.195	2.5904	
1440 minute summer	S6.12	Hydro-Brake®	S6.13	11.5				
15 minute summer	S6.13	1.014	S6.14	11.5	1.268	0.208	0.4311	
480 minute summer	S6.14	1.015	DSD2	11.5	1.748	0.101	0.0416	430.7

			, Barr	ett Mah	ony Con	sulting	F	ile: Clo	onliffe N	etwork	2021-05	Page 1	
	ARRE I DNSULTIN	I MAHUNY Ig engineer:	Engi	neers Lto	d.		N	letwor	k: Catch	nment 3		19.253	
	VIL & ST	RUCTURAL	52-5	4 Lower	Sandwi	th Stre	et D	irk Ko	tze			Holy Cro	ss Lands
			Dub	lin 02			3	1/05/2	2021			Clonliffe	
						De	sign Set	<u>ttings</u>					
F	Rainfall	Methodo	ology f	SR			Maxi	mum [.]	Time of	Concent	tration (m	nins) 30.	.00
F	Return	Period (y	ears) 5	5					Maxin	num Rai	nfall (mm	n/hr) 50.	.0
	Additional Flow (%) 0								Mi	nimum \	velocity (I	m/s) 1.0	0
		FSR Re	gion S	Scotland	and Ire	land				Cor	nection 1	Type Lev	el Soffits
		M5-60 (mm) 1	16.100				Μ	inimum	Backdro	op Height	:(m) 0.2	.00
		Ra	tio-R (0.278					Prefe	rred Cov	er Depth	(m) 1.2	.00
	 .	(– , (CV 2	1.000					Include	Interme	diate Gro	ound √	
	lime d	of Entry (r	nins) 4	4.00				Enfo	rce best	practice	e design r	ules √	
							Nodes	<u>s</u>					
		Name	e Area	n Tof	E Cov	ver Di	iametei	r E	Easting	No	orthing	Depth	
			(ha)	(min	s) Lev	vel	(mm)		(m)		(m)	(m)	
		\$4.0	0 10	5 40	(n 71	1) 30	1200	716	5316 97	2 736	159 308	1 958	
		54.3	0.10	4.0	0 7.1 00 6.8	40	1200	710^{-710}	5323.55	5 736	157.740	1.300	
		S4.1			6.8	00	1200) 716	5320.08	1 736	148.111	1.700	
		S4.2			6.5	60	1200) 710	5318.58	7 736	140.664	1.560	
							<u>Links</u>						
N	ame	US	DS I	ength	ks (mm	n)/ L	JS IL	DS IL	Fall	Slope	Dia	T of C	Rain
		Node N	lode	(m)	'n		(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.	.001	S4.0 S	4.1	8.348	0.6	500 5	.172	5.100	0.072	116.3	225	4.11	50.0
1.	.002	S4.1 S	4.2	7.595	0.6	500 5	.100	5.000	0.100	75.9	150	4.22	50.0
2.	.001	S4.3 S	4.1	10.237	0.6	500 5	.540 5	5.150	0.390	26.2	100	4.11	50.0
		Name	Vel	Сар	Flow	US	DS	Σ	Area	Σ Add	Pro	Pro	
			(m/s)	(I/s)	(I/s)	Depth	Dept	th ((ha) 🛛	Inflow	Depth	Velocity	
						(m)	(m))		(I/s)	(mm)	(m/s)	
		1.001	1.211	48.2	19.0	1.733	1.47	75 C	0.105	0.0	98	1.141	
		1.002	1.155	20.4	19.0	1.550	1.41		0.105	0.0	115	1.308	
		2.001	1.512	11.9	0.0	1.200	1.55	50 (000	0.0	U	0.000	
						<u>Pipe</u>	line Sch	nedule	<u>!</u>				
	Link	Lengt	n Slop	e Dia	Lii	nk l	US CL	US IL	US D	epth [DS CL D	DS IL DS	Depth
		(m)	(1:X) (mm	n) Ty	ре	(m)	(m)	(n	n)	(m)	(m)	(m)

7.130 5.172

5.100

5.540

DS

Node

S4.1

S4.2

S4.1

6.800

6.840

MH

Туре

Adoptable

Adoptable

Adoptable

6.800 5.100

5.000

5.150

ΜН

Туре

Adoptable

Adoptable

Adoptable

6.560

6.800

Node

Туре

Manhole

Manhole

Manhole

1.733

1.550

1.200

Dia

(mm)

1200

1200

1200

1.475

1.410

1.550

1.001

1.002

2.001

8.348

7.595

1.002 S4.1

2.001 S4.3

10.237

Link

1.001

116.3

75.9

26.2

Dia

(mm)

1200

1200

1200

US

Node

S4.0

225

150

100

Circular

Circular

Circular

Node

Туре

Manhole

Manhole

Manhole

3M	BARRET CONSULTIN CIVIL & ST	T MAHONY Ng Engineers IRUCTURAL	Barrett Mahony Engineers Ltd. 52-54 Lower Sa Dublin 02	ndwith S	ang Street	File: Cl Netwo Dirk Ko 31/05/	onliffe Ne rk: Catchr otze /2021	twork 2021 nent 3		Page 2 19.253 Holy Cross Clonliffe	Lands
				<u>N</u>	<u>lanhole</u>	<u>Schedu</u>	<u>le</u>				
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conn	ections	Link	IL (m)	Dia (mm)
	S4.0	716316.972	736159.308	7.130	1.958	1200	Ģ		1 001	5 172	225
	S4.3	716323.555	736157.740	6.840	1.300	1200	Í P)	2.001	5.540	100
	S4.1	716320.081	. 736148.111	6.800	1.700	1200		$\begin{array}{c} 0\\ 1\\ 1\\ 2\\ \end{array}$	2.001 2.001 1.001	5.540 5.150 5.100	100 100 225
	S4.2	716318.587	736140.664	6.560	1.560	1200		0 1	1.002	2 5.100 2 5.000	150 150
		Rainfall M I An	1ethodology F FSR Region S M5-60 (mm) 1 Ratio-R 0 Summer CV 1 alysis Speed E	<u>SR</u> cotland a .6.100).278 000 Detailed	mulatior	nd	gs Drain D Additiona Check I Check D	Skip Steady oown Time Il Storage (I Discharge V Discharge V	y State (mins) m³/ha) Rate(s) olume	x 240 20.0 x x	
		15 60 30 120	180 360 240 480) 600) 720	Storm Du 0 90 0 14	urations 60 40	2160 2880	4320 5760	7200 8640	10080	0
		Re	turn Period Cl (vears)	limate Cl (CC %	hange 5)	Additio (A	nal Area %)	Additiona (Q %	al Flow 6)		
			5 30 100		20 20 20	·	0 0 0		0 0 0		
			Noc	<u>le S4.0 C</u>	Online Hy	dro-Bra	ake® Cont	<u>rol</u>			
	Repla	F aces Downstru Invert I Design D Design F	ap Valve x eam Link √ Level (m) 5.17 epth (m) 1.50 Flow (I/s) 2.0	2 0 N M	P ⁄lin Outle in Node	O Sump A roduct et Diam Diamet	bjective vailable Number eter (m) er (mm)	(HE) Minir √ CTL-SHE-0 0.075 1200	nise up 1061-20	ostream st 000-1500-2	orage 2000
			Nod	e S4.0 D	epth/Are	ea Stora	ige Structi	ure			
	Base Side	Inf Coefficien Inf Coefficien	t (m/hr) 0.000 t (m/hr) 0.000	000	Safety Fa Porc	ctor 2 osity (2.0).95 T	Ir ime to half	nvert Lo f empt	evel (m) y (mins)	5.172 296

Depth Area Inf Area Depth Area Inf Area Depth Area Inf Area (m²) (m²) (m²) (m²) (m) (m²) (m) (m²) (m) 0.000 36.0 0.0 1.200 36.0 0.0 1.201 0.0 0.0

Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 3
Engineers Ltd.	Network: Catchment 3	19.253
52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
Dublin 02	31/05/2021	Clonliffe

<u>Rainfall</u>

Event	Peak Intensity	Average Intensity	
Ever 130% CC 1E minute summer	157 /21	(IIIII/III) AAEAO	
5 year $\pm 20\%$ CC 15 minute summer	107.451	20 202	
5 year $\pm 20\%$ CC 50 minute summer	75 120	10 857	
5 year $\pm 20\%$ CC 100 minute summer	18 030	12.602	
5 year $\pm 20\%$ CC 120 minute summer	27 027	0 762	
5 year +20% CC 240 minute summer	30.619	9.702 8.002	
5 year +20% CC 360 minute summer	24 099	6 201	
5 year +20% CC 480 minute summer	19 415	5 1 3 1	
5 year +20% CC 600 minute summer	16 189	4 4 2 8	
5 year +20% CC 720 minute summer	14 646	3 925	
5 year +20% CC 960 minute summer	12.322	3.245	
5 year +20% CC 1440 minute summer	9 253	2 480	
5 year +20% CC 2160 minute summer	6.857	1.895	
5 year +20% CC 2880 minute summer	5.841	1.565	
5 year +20% CC 4320 minute summer	4.573	1.196	
5 year +20% CC 5760 minute summer	3.858	0.988	
5 year +20% CC 7200 minute summer	3.338	0.852	
5 year +20% CC 8640 minute summer	2.957	0.754	
5 year +20% CC 10080 minute summer	2.669	0.681	
30 year +20% CC 15 minute summer	230.533	65.233	
30 year +20% CC 30 minute summer	158.330	44.802	
30 year +20% CC 60 minute summer	110.655	29.243	
30 year +20% CC 120 minute summer	70.393	18.603	
30 year +20% CC 180 minute summer	55.084	14.175	
30 year +20% CC 240 minute summer	44.150	11.667	
30 year +20% CC 360 minute summer	34.380	8.847	
30 year +20% CC 480 minute summer	27.479	7.262	
30 year +20% CC 600 minute summer	22.768	6.227	
30 year +20% CC 720 minute summer	20.489	5.491	
30 year +20% CC 960 minute summer	17.093	4.501	
30 year +20% CC 1440 minute summer	12.685	3.400	
30 year +20% CC 2160 minute summer	9.288	2.567	
30 year +20% CC 2880 minute summer	7.842	2.102	
30 year +20% CC 4320 minute summer	6.059	1.584	
30 year +20% CC 5760 minute summer	5.061	1.296	
30 year +20% CC 7200 minute summer	4.344	1.108	
30 year +20% CC 8640 minute summer	3.823	0.975	
30 year +20% CC 10080 minute summer	3.432	0.875	
100 year +20% CC 15 minute summer	298.703	84.523	
100 year +20% CC 30 minute summer	206.626	58.468	
100 year +20% CC 60 minute summer	143.868	38.020	
100 year +20% CC 120 minute summer	90.806	23.997	
100 year +20% CC 180 minute summer	70.639	18.178	
100 year +20% CC 240 minute summer	56.367	14.896	
100 year +20% CC 360 minute summer	43.598	11.219	
100 year +20% CC 480 minute summer	34.671	9.163	
100 year +20% CC 600 minute summer	28.612	7.826	
100 year +20% CC 720 minute summer	25.663	6.878	
100 year +20% CC 960 minute summer	21.295	5.608	
100 year +20% CC 1440 minute summer	15.685	4.204	
100 year +20% CC 2160 minute summer	11.399	3.150	
100 year +20% CC 2880 minute summer	9.570	2.565	

	Barrett Mahony Consulting	File: Clonliffe Network 2021-05	Page 4
	Engineers Ltd.	Network: Catchment 3	19.253
	CIVIL & STRUCTURAL 52-54 Lower Sandwith Street	Dirk Kotze	Holy Cross Lands
	Dublin 02	31/05/2021	Clonliffe

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +20% CC 4320 minute summer	7.332	1.917
100 year +20% CC 5760 minute summer	6.086	1.558
100 year +20% CC 7200 minute summer	5.198	1.326
100 year +20% CC 8640 minute summer	4.555	1.162
100 year +20% CC 10080 minute summer	4.075	1.039

BARRETT MAHONY
CONSULTING ENGINEERS
CIVIL & STRUCTURALBarrett Mahony Consulting
Engineers Ltd.File: Clonliffe Network 2021-05
Network: Catchment 3Page 5Dirk Kotze19.253Dublin 0231/05/2021Clonliffe

Results for 5 year +20% CC Critical Storm Duration. Lowest mass balance: 99.88%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute summer	S4.0	180	5.710	0.538	8.9	19.5904	0.0000	SURCHARGED
15 minute summer	S4.3	1	5.540	0.000	0.0	0.0000	0.0000	ОК
15 minute summer	S4.1	14	5.129	0.029	1.6	0.0328	0.0000	ОК
15 minute summer	S4.2	24	5.028	0.028	1.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute summer	S4.0	Hydro-Brake®	S4.1	1.6				
15 minute summer	S4.3	2.001	S4.1	0.0	0.000	0.000	0.0000	
15 minute summer	S4.1	1.002	S4.2	1.6	0.671	0.076	0.0177	11.3

BARRETT MAHONY
CONSULTING ENGINEERS
CIVIL & STRUCTURALBarrett Mahony Consulting
Engineers Ltd.File: Clonliffe Network 2021-05
Network: Catchment 3Page 6Dirk Kotze19.253Dirk KotzeHoly Cross LandsDublin 0231/05/2021

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.88%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute summer	S4.0	192	6.042	0.870	12.9	31.6547	0.0000	SURCHARGED
15 minute summer	S4.3	1	5.540	0.000	0.0	0.0000	0.0000	ОК
240 minute summer	S4.1	192	5.129	0.029	1.6	0.0328	0.0000	ОК
240 minute summer	S4.2	192	5.028	0.028	1.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute summer	S4.0	Hydro-Brake [®]	S4.1	1.6				
15 minute summer	S4.3	2.001	S4.1	0.0	0.000	0.000	0.0000	
240 minute summer	S4.1	1.002	S4.2	1.6	0.672	0.077	0.0177	38.6

BARRETT MAHONY
CONSULTING ENGINEERS
CIVIL & STRUCTURALBarrett Mahony Consulting
Engineers Ltd.File: Clonliffe Network 2021-05
Network: Catchment 3Page 7BARRETT MAHONY
CONSULTING ENGINEERS
CIVIL & STRUCTURAL52-54 Lower Sandwith Street
Dublin 02Dirk Kotze
31/05/2021Holy Cross Lands

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.88%

Node Event	US Node	Peak	Level	Depth	Inflow (I/s)	Node	Flood (m³)	Status
	Noue	(111115)	(11)	(111)	(1/3)	voi (iii)	(111)	
360 minute summer	S4.0	272	6.347	1.175	12.7	42.7622	0.0000	SURCHARGED
15 minute summer	S4.3	1	5.540	0.000	0.0	0.0000	0.0000	ОК
360 minute summer	S4.1	272	5.131	0.031	1.8	0.0352	0.0000	ОК
360 minute summer	S4.2	272	5.030	0.030	1.8	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
360 minute summer	S4.0	Hydro-Brake [®]	S4.1	1.8				
15 minute summer	S4.3	2.001	S4.1	0.0	0.000	0.000	0.0000	
360 minute summer	S4.1	1.002	S4.2	1.8	0.698	0.088	0.0195	51.5

Appendix 4

Soakaway Test Results

IF1

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.40m 1.50m (L x W x D)

Date	Time	Water level (m bgl)
18/05/2020	0	-0.500
18/05/2020	1	-0.500
18/05/2020	6	-0.520
18/05/2020	16	-0.530
18/05/2020	23	-0.560
18/05/2020	54	-0.590
18/05/2020	95	-0.660
18/05/2020	136	-0.700
18/05/2020	163	-0.750
18/05/2020	234	-0.780
18/05/2020	268	-0.800
18/05/2020	335	-0.830
18/05/2020	369	-0.850

*Soakaway failed - Pit backfilled						
Start depth	Depth of Pit	Diff	75% full	25%full		
0.50	1.500	1.000	0.75	1.25		

IF2

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.7m x 0.40m 1.50m (L x W x D)

Date	Time	Wate (m	er level bgl)
18/05/2020	0	-0.500	
18/05/2020	1	-0.520	
18/05/2020	6	-0.520	
18/05/2020	16	-0.510	
18/05/2020	23	-0.510	
18/05/2020	54	-0.510	_
18/05/2020	95	-0.530	
18/05/2020	136	-0.550	
18/05/2020	163	-0.580	
18/05/2020	234	-0.580	
18/05/2020	268	-0.590	
18/05/2020	335	-0.600	
18/05/2020	369	-0.610	
		*Soakawa	y failed - Pit backfilled
0			

		"Soakaway falled - Pit	Dackfilled	
Start depth	Depth of Pit	Diff	75% full	25%full
0.50	1.500	1.000	0.75	1.25

Appendix 5

DCC / IW Drainage & Watermain Records

M	EIREANN : IRISH
M	Unknown Meter ; Other Meter
\checkmark	PRV
\bowtie	Sluice Valve Open
M	Sluice Valve Closed
M	Sluice Valve Closed
••	Double Air Control Valve
vvater Hydrant	Function
•	Fire Hydrant
×	Telemetry Kiosk
ш	Сар
•	Other Fittings
Water	Distribution Mains
	Irish Water
	Irish Water
	Irish Water
	Water Abandoned Lines
Sewer	[,] Manholes
Manhole •	Type Standard
LH	Lamphole
0	Other; Unknown
Sewer	^r Discharge Points
Discharg	је Туре
o	Other; Unknown
	Pump Station
Sewer	e Iniets
CP	Catchpit
o	Other; Unknown
	Gravity - Combined
	Gravity - Foul
	Gravity - Overflow
Storm	Manholes
•	Standard
Storm	Discharge Points
Discharg	је Туре
-	Outfall
_	Surface Gravity Mains Private
Storm	Inlets
Inlet Type	e
	Gully
Surfac	e Fittings
•	/pe Other; Unknown
_	1:1,000 at A0 Last edited:
	08/02/2019
	Metres
	0 25 50 100
o part of this em of any na	drawing may be reproduced or transmitted in any form or stored in any retrieval ature without the written permission of Irish Water as copyright holder except as
eu ior USE 0	an the projection which the document was originally issued.

© Copyright Irish Water

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

Appendix 6

Irish Water Confirmation of Feasibility Letter

Michael Hughes

Sandwith House, 52-54 LWR Sandwith Street, Dublin 2 D02WR26

18 September 2020

Re: CDS20000538 pre-connection enquiry - Subject to contract | Contract denied

Connection for Housing Development of 1,800 units at Holy Cross Lands, Clonliffe Road, Dublin 3

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Holy Cross Lands, Clonliffe Road, Dublin 3 (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>		
Water Connection	Feasible without infrastructure upgrade by Irish Water		
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water		
SITE SPECIFIC COMMENTS			
	The Development can be supplied from existing 600mm DI in Drumcondra Road Lower via a new 250mm ID connecting pipe with installation of a PRV controller, a bulk/DMA meter and associated telemetry system.		
Water Connection	Secondary connection should be provided for the Development from existing 225mm HPPE water main in Drumcondra Road Lower via a new 250mm ID connecting pipe with installation of a control valve (to be closed during normal operation).		
Wastewater Connection	Separate storm and foul water connection services have to be provided for the Development.		
	Storm water from the Development must be discharged only into storm water network that does not discharge into an Irish Water combined/foul		

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

-HP-MI

sewer. The storm water connection arrangement should be agreed with the Local Authority Drainage Division.
Storm water from the Site, currently discharging into Irish Water combined network, must be removed from the network where possible prior the connection.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marina Zivanovic Byrne from the design team 89 via email mzbyrne@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

M Buye

Maria O'Dwyer Connections and Developer Services

Appendix 7

Irish Water State of Design Acceptance

Michael Hughes Sandwith Hse 52-54 Sandwith Street Dublin 2 Dublin D02 WR2

2 June 2021

Re: Design Submission for Holy Cross Lands, Clonliffe Road, Dublin 3 (the "Development") (the "Design Submission") / Connection Reference No: CDS20000538

Dear Michael Hughes,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Dario Alvarez Email: dalvarez@water.ie

Yours sincerely,

yvonne Maesis

Yvonne Harris Head of Customer Operations

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Appendix A

Document Title & Revision

- [CLN-BMCE-50-ZZ-DR-C-1008-S1 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S2 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S3 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S4 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S5 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S6 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S7 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1008-S8 -PL3- Watermain Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S1 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S2 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S3 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S4 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S5 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S6 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S7 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1009-S8 -PL4- Foul Sewer Layout]
- [CLN-BMCE-50-ZZ-DR-C-1160-S1-PL2 Foul Sewer Long Sections]
- [CLN-BMCE-50-ZZ-DR-C-1161-S2 -PL2 Foul Sewer Long Sections]
- [CLN-BMCE-50-ZZ-DR-C-1162-S3 PL1 Foul Sewer Long Sections]
- [CLN-BMCE-50-ZZ-DR-C-1163-S4 PL1 Foul Sewer Long Sections]

Standard Details/Code of Practice Exemption:

*Statement of Design Acceptance on condition that Foul Sewer line and watermain within the site will be privately managed, Irish water will not take them in charge.

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix 8

BMCE Memo Response to DCC Drainage Comments on PAC Submission

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

MEMORANDUM

То:	Maria Treacy (DCC Drainage Division)
From:	Michael Hughes (Barrett Mahony Consulting Engineers)
Date:	02 April 2021
Subject:	ABPSHDPAC0033/20 – SHD Application for Lands at Holycross College, Clonliffe Road, Dublin 3 and Drumcondra Road Lower, Drumcondra, Dublin 9.

Dear Maria,

We write in relation to the above SHD application which we are due to submit to An Bord Pleanala shortly. We acknowledge the comments received by DCC Drainage Division on the PAC submission, noted below in italics and wish to outline our responses to the comments raised in relation to the proposed surface water drainage strategy and flood risk for the development.

DCC DRAINAGE DIVISION COMMENTS RECEIVED ON THE PAC SUBMISSION TO ABP:

<u>Masterplan</u>

Further consideration shall be given to the overall surface water management strategy in terms of increased use of natural water retentions measures to ensure an appropriate level of treatment prior to discharge to the River Tolka and in keeping with the existing environment.

The Developer shall submit a flood risk assessment for the masterplan lands, ensuring an appropriate level of assessment with reference and implementation of the recommendations as set out in the Strategic Flood Risk Assessment that forms part of the current Development Plan 2016-2022.

Detail of the findings of the report and how it influenced the layout of the proposed development shall be provided, ensuring there shall be no development in Flood Zones A or B.

The impact of global warming in relation to increased river flows shall also be assessed in accommodating the possible extension of Flood Zone B within the Masterplan lands. No development shall be located in areas that would reduce natural storage of the existing site.

The Masterplan shall be developed further to outline the proposed sustainable surface water management strategy that will be implemented for the entire Masterplan lands in order to mitigate against any increase

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

in flood risk or further deterioration of the water quality in the river Tolka in accordance with the Water Framework Directive and Flood Directive. In particular, detail of the proposed development on the GAA site and associated flood risk/flood storage and surface water management plan shall be provided.

Proposed Development Residential Site

The site-specific flood risk assessment shall be developed further to include references and implement any recommendations as set out in the Strategic Flood Risk Assessment that forms part of the current Development Plan 2016- 2022, for the proposed development.

Evidence to be provided of appropriate treatment of surface water discharges to the River Tolka in order to confirm compliance with the objectives of the Water Framework Directive and Flood Directive.

The development shall incorporate Sustainable Drainage Systems in the management of surface water, with a minimum requirement of a 2-stage treatment approach. Full details of these shall be agreed in writing with Drainage Division prior to submission of revised proposals.

The main surface water infrastructure shall be implemented as part of the first Phase 1 of the overall proposed development to facilitate adequate treatment of surface water prior to discharge to the River Tolka and to ensure that the flood risk is appropriately managed both during and when the overall development is constructed.

The Infrastructure Report, Document No 19.253-IR-01 shall be developed further to

- Indicate the treatment train for each hardstanding area proposed in the new development.
- Provide detail of phasing of proposed surface water drainage and green infrastructure.
- Provide detail of protections to the river from any site runoff or other forms of possible pollution from site activities during construction.

Clarification on the proposal to drain lands from proposed Building C2 to the public combined sewer at Clonliffe Road as this proposal does not reflect the terms in the Letter of confirmation of Feasibility from Irish Water.

BMCE Response to **DCC** DRAINAGE DIVISION COMMENTS RECEIVED:

In response to the comments on the masterplan area flood risk assessment, refer to the attached document Report 19.253-IR-03 - Masterplan Flood Risk Assessment.

In response to the comments on the management and control of the construction stage surface water, refer to the attached document Report 19.253-RP-05 - Outline Construction Surface Water Management Plan

We outline below our responses to the DCC comments relating to the "Proposed Residential Site" and specifically the Sustainable Drainage Measures which are proposed to ensure appropriate management and treatment of surface water run-off generated by the new development.

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

INTRODUCTION

Surface water run-off from the proposed development will drain via gravity and ultimately discharge to the River Tolka, with the exception of Building C2 adjacent to Clonliffe Road which will discharge at a restricted flow, to the Irish Water combined sewer on Clonliffe Road. This has been agreed in principle with Irish Water and shall be reflected in the Statement of Design Acceptance issued with the submission to An Bord Pleanala. Furthermore, it is noted that any discharge to the combined sewer will, of course, be subject to the Applicant entering into a Connection Agreement with Irish Water prior to construction.

In response to DCC Drainage Division comments re sustainable drainage systems and the requirement for a minimum two-stage treatment train, the design team have reviewed the surface water strategy in detail, and have amended the surface water design in order to incorporate additional sustainable drainage measures where feasible. The amended design seeks to place greater emphasis on integrating increased opportunities for interception of surface water at source, through natural retention measures. Please refer to revised BMCE drawings CLA-BMD-00-ZZ-DR-C-1005-S1 and CLA-BMD-00-ZZ-DR-C-1005-S2 showing the amended SuDS strategy layouts.

A SuDS Treatment Train for the various sources of run-off generated within the new development has been designed to achieve adherence with the DCC Drainage Division requirement for a minimum two-stage treatment approach and ultimately achieve a greater diversity of SuDS measures in order to improve water quality.

A Phasing Plan for the development (Refer to BMCE drawing CLA-BMD-00-ZZ-DR-C-3007 enclosed) is now provided showing the extent of development within each proposed phase. It should be noted that as part of the Phase 1 of the development, the Applicant commits to providing the requisite main surface water infrastructure needed to facilitate the adequate treatment of all surface water run-off from this Phase 1 of the development. By nature of the surface water strategy design for the overall development, some of this Phase 1 infrastructure contributes to the SuDS treatment train for subsequent phases. This, along with the phase-specific SuDS measures in each Phase of development, ensures that the full SuDS treatment train is implemented for each phase prior to any discharge entering the River Tolka to the north.

PROPOSED SURFACE WATER MANAGEMENT PLAN

The proposed Surface Water Management Plan is in line with the key requirements of the Dublin City Council Drainage Division Planning & Development Control Section. The proposed surface water drainage system takes cognisance of the Dublin City Development Plan 2016 – 2022 with respect to SuDS Section 9.5.4. The amended proposals provide a minimum of two-stage treatment, including interception and primary and secondary treatment of surface water run-off. This treatment approach is in line with The CIRIA SuDS Manual C753 and is outlined below. The measures to be incorporated into the development and will include intensive and extensive green roofs, permeable paving, tree pits, gravel filter drains, rain gardens and shallow infiltration systems.

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

Proposed Surface Water Treatment Train

The proposed surface water system uses a number of SuDS components in series to provide a minimum of two-stage treatment prior to discharge into the receiving systems. A SuDs Management Train for the Development has been prepared – refer to Figure 1. The SuDS Management Train describes how rainfall falling on each surface is managed and treated prior discharge and clearly demonstrates a robust train of treatment, which in most cases exceeds the minimum two-stage requirement.

Rainfall run-off will be intercepted and treated at roof levels using intensive/extensive green roof where feasible. A multidisciplinary coordinated approach has been taken with regard to assigning the appropriate areas of roof level as intensive green roof, in an effort to accommodate other elements such as plant and photovoltaic panels. Furthermore, all podium areas (both hard and soft landscaping) over basement will be finished using an intensive green roof drainage board above the waterproofing, to ensure greater interception of rainwater and treatment through the substrate prior to entering the pipework system. Where roof areas are not covered by green roof

Owing to constraints on the site arising from the desire to retain existing mature trees and protection of these tree root zones (refer to constraints plan layout CLA-BMD-00-ZZ-DR-C-1010) pavement run-off will be intercepted and treated using a variety of SuDS components including gravel filter drains, permeable paving and rain gardens, which have been strategically selected and positioned where space permits.

The drainage of hardstanding has been re-examined and amended where feasible. The majority of pedestrianised areas and footpaths will now be constructed using permeable paving or will be constructed such that the impermeable paths drain to a gravel trenches adjacent to the path, allowing for full interception and full infiltration of rainwater back to source.

Vehicular carriageways have proved challenging in terms of accommodating SuDS measures, given the existing tree constraints, but the design has now been amended to incorporate a far more robust approach to treatment of run-off from carriageways, ensure the risk of pollutants entering the Tolka River has been minimised significantly. Roads for the most part will either discharge to gravel filter drains along the verges, tree pits, or raingardens. Where adjacent to existing tree root protection zones, the run-off will discharge to trapped road gullies with sumps. Pipework from these will discharge into catchpit (silt trap) manholes followed by proprietary treatment systems such as Hydro International 'Downstream Defender' and bypass petrol interceptors which will remove any final silts and oils to discharge into the River Tolka.

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

Proposed Surface Water Treatment SuDS Measures

Green roof

The proposed green roofs will consist of intensive/extensive green roofing on specific areas of rooftop, away from plant and photovoltaic panels. The proposed green roof coverage is summarised in the enclosed Green Roof Coverage Summary Table – refer Figure 2. It should be noted that areas may be subject to further minor amendments prior to lodging the full application to An Bord Pleanala.

The green roof will provide interception of rainfall, filtration through the medium, and storage within the voids facilitating evapotranspiration.

The green roofs will intercept and absorb the first 5 – 10mm of rainfall, thereby reducing the volume of runoff into the receiving systems. Rainfall run-off that is not absorbed by the green roof will filtrate through the substrate and geotextile filter fabric. A limited attenuation volume will be provided by the green roof crate layer system below the geotextile filter fabric, which will provide a time delay between the rainfall event and discharge into the system thereby reducing peak discharge rates. According to the leading green roof supplier/manufacturer Bauder, up to 40% of average annual rainfall can be absorbed and released back into the atmosphere by transpiration and evaporation.

Therefore, rainfall run-off from roof areas covered by the proposed green roofs will go through a minimum two-stage treatment train including interception and primary treatment in line with SuDS Manual C753 Table 26.7

Filter Drains

The proposed filter drains will be linear excavations filled with suitable granular material with a minimum void porosity of 30% and wrapped in a geotextile filter membrane. The filter drains will intercept pavement run-off at ground level. Catchpits will be provided downstream of the filter drains to offer additional surface water treatment including retention.

The proposed filter drains will provide interception and reduce peak run-off rates prior to discharge into the surface water drainage system. The granular material and geotextile filter material will provide interception and act as a secondary treatment in preventing ingress of fine material from paved areas prior to discharge into surface water drainage system.

Therefore, rainfall run-off that will discharge into the filter drains / catchpits will go through a three-stage treatment train including interception, primary and secondary treatment in line with SuDS Manual C753 Table 26.7, replicated in

Permeable Pavement

The proposed permeable pavement will be located at parking bays throughout the development. The proposed permeable paving structures will be filled with suitable granular material with a minimum void porosity of 30% and wrapped in a geotextile filter membrane. The granular material will provide interception within the voids and by raising the invert of the outlet pipe to 150mm above the base. The geotextile filter

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

material can offer secondary treatment of rainfall runoff by preventing ingress of fine material from paved areas through filtration prior to discharge into surface water drainage system.

Therefore, rainfall run-off from localised access road will go through a two-stage treatment train including interception and primary treatment in line with SuDS Manual C753 Table 26.7.

Raingarden & Tree Pits

A proposed raingarden will be located between Block D2 and Block C1. It will intercept and treat pavement run-off from the adjacent access roads. Furthermore, additional raingardens have been added to the area at the north west of the development close to the "A" blocks. The proposed raingardens will allow surface water run-off from paved areas to pond temporarily before filtering through vegetation and underlaying soil before discharge into the system and therefore will serve as a bio-retention system providing interception as the water discharges through plants, shrubs and landscape medium. The planters will provide temporary retention for the 1 in 1 year event in the shallow depressions. Sand based material will be used to filter the water passing through. Further filtration will be provided by the geotextile filter membrane prior to discharge into the surface water system.

Therefore, rainfall run-off from the adjacent access roads or standard roofs, will go through a three-stage treatment train including interception, primary and secondary treatment in line with SuDS Manual C753 Table 26.7

Proprietary Surface Water Treatment Systems

Due to existing site constraints including mature trees adjacent to existing roads the construction of many forms of sustainable drainage systems is not easily achievable. At suitable locations, a break will be introduced on the proposed kerbs to allow run-off to infiltrate to ground and into tree pits, gravel infiltration strips, but where this option is not available, it is the design intent to install proprietary surface water treatment systems prior to discharge into the river. The surface water treatment systems include catchpits, oil separators and sediments remover such as a 'Downstream Defender' or similar.

COMPLIANCE WITH THE PRINCIPLES OF SUSTAINABLE DRAINAGE SYSTEMS

The Greater Dublin Strategic Drainage Study (GDSDS) addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanisation, by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing the increase in both rate and volume of run-off, as well as ensuring the environment is protected from any pollution from roads and buildings. These drainage design criteria are as follows:

GDSDS Criteria		Aims
Criterion 1	River Water Quality	To prevent pollution
	Protection	To maintain base flows in streams
		To recharge groundwater
Criterion 2	River Regime Protection	To prevent river scour due to flash flooding

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

Criterion 3	Flood Risk Assessment	• To prevent site flooding for the 30yr storm and manage overland flows if site flooding occurs for the 100yr storm
Criterion 4	River Flood Protection	To prevent river flooding

The overarching principle of SuDS design is that surface water runoff should be managed for maximum benefit. The types of benefits that can be achieved by SuDS will be dependent on the site, but fit broadly into four categories – The Four Pillars of SuDS – as described in the CIRIA SuDS Manual C753.

SuDS Category	Benefit
Water Quantity	 Maintain and protect the natural water cycle
	 Support the management of flood risk
Water Quality	 Manage the quality of run-off to prevent pollution
Biodiversity	 To create and sustain better places for nature
Amenity	To create and sustain better places for people

Compliance with four GDSDS criteria and the four pillars of SuDS as described in the CIRIA SuDS Manual C753, requires a robust strategy that employs at source and site wide SuDS control measures. The SuDS strategy for the development has been developed in conjunction with the Landscape Architects, and strives to achieves the aims and benefits outlined above, despite being somewhat restricted by the available green space, and in particular the necessity to retain existing mature trees on the subject site.

Criterion 1 GDSDS – River Water Quality Protection

Run-off from natural greenfield areas contributes very little pollution and sediment to rivers and for most rainfall events direct run-off from greenfield sites to rivers does not take place as rainfall percolates into the ground. By contrast, urban run-off, when drained by pipe systems, results in run-off from virtually every rainfall event with high levels of pollution, particularly in the first phase of run-off, with little rainfall percolating to the ground. To prevent this happening, Criterion 1 requires that interception storage and/or treatment storage is provided, thereby replicating the run-off characteristics of the pre-development greenfield site.

In the context of the proposed development, it is proposed that all surface water run-off will go through a two-stage treatment train via green roofs, permeable paving, filter drains and rain garden before discharging at a controlled rate into the receiving systems. R

Interception Storage

Interception storage where required, should ensure that at least, the first 5mm of rainfall runoff is intercepted on site and does not find its way to the receiving water, in line with the GDSDS.

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

The required volume of interception is 178m³ and the proposed design will easily accommodate this requirement following the introduction of additional SuDS measures. Further detailed calculations demonstrating this will be provided in the amended Infrastructure Report for Planning, and to demonstrate compliance with GDSDS Criterion 1.

Treatment Storage

In accordance with the GDSDS, interception storage & treatment storage are interchangeable. Since full interception storage has been provided, treatment storage is not required.

Criterion 2 GDSDS – River Regime Protection

Regardless of the rainfall event, unchecked run-off from a developed site through traditional pipe networks will discharge into receiving waters at rates that are an order of magnitude greater than that prior to development. This can cause flash flow in the outfall river / stream that can cause scour and erosion. Attenuation storage is provided to prevent this occurring by limiting the rate of run-off to that which took place from the pre-development greenfield site.

In the context of the subject site, peak run -off discharge from the proposed development will be restricted to a peak rate of 15.5 l/s into the River Tolka in line with GDSDS requirement of 2.0 l/s/ha. Attenuation facilities will be provided throughout the site for storm events up to and including the 1 in 100 year plus 20% for climate change. Therefore, GDSDS Criterion 2 is complied with.

Criterion 3 GDSDS – Level of Service For the Site

The GDSDS requires that no flooding should occur on site for storms up to and including the 1 in 30 year event. The pipe network and the attenuation storage volumes should, therefore, be checked for such storms to ensure that no site flooding occurs although partial surcharging of the system is allowed as long as it does not threaten to flood.

For the 1 in 100 year event, the pipe network can fully surcharge and cause site flooding, but the top water level due to any such flooding must be at least 500mm below any vulnerable internal floor levels, and the flood waters should be contained within the site. In addition, the top water level in any attenuation device during the 100 year storm must be at least 500mm below any vulnerable internal floor levels.

MicroDrainage simulations will be provided demonstrating a level of service as described above and ensures no surface water flooding for storms up to and including the 1 in 100 year with 20% extra for climate change, and ultimately to demonstrate GDSDS Criterion 3 is complied with.

Criterion 4 GDSDS – River Flood Protection

Criterion 4 is intended to prevent flooding of the receiving system / watercourse by either limiting the volume of run-off to the pre-development greenfield volume using 'long-term storage' (Option 1) or by limiting the rate of run-off for the 1 in 100 year storm to QBAR or 2.0l/s/ha without applying growth factors using 'extended attenuation storage' (Option 2).

Phone +353 1 6773200 Email bmce@bmce.le www.bmce.ie

Option 2 is complied with as the proposed development will limit discharge rate to 15.5 l/s in line with GDSDS requirement of 2.0 l/s/ha.

SUMMARY

The proposed Surface Water Management Plan for the development is in line with the key requirements of the Dublin City Drainage Division and the Dublin City Development Plan 2016-2022 with respect to Sustainable Drainage Systems.

Rainfall run-off from the proposed site development will go through at least a two-stage treatment train prior to discharge into the River Tolka and the Irish Water sewerage network on Clonliffe Road. The proposed SuDS measures will reduce the quantity and improve the quality of water discharging into the receiving system. **Error! Reference source not found.**

Attachments:

Report 19.253-IR-03 - Masterplan Flood Risk Assessment.

Report 19.253-RP-05 - Outline Construction Surface Water Management Plan

Drawings:

C-1005 S1 Proposed SuDS Scheme Site Plan Layout Sheet 1 of 2

C-1005 S2 Proposed SuDS Scheme Site Plan Layout Sheet 2 of 2

- C-1008 S1 Proposed Drainage Site Plan Layout Sheet 1 of 8
- C-1008 S2 Proposed Drainage Site Plan Layout Sheet 2 of 8
- C-1008 S3 Proposed Drainage Site Plan Layout Sheet 3 of 8
- C-1008 S4 Proposed Drainage Site Plan Layout Sheet 4 of 8
- C-1008 S5 Proposed Drainage Site Plan Layout Sheet 5 of 8
- C-1008 S6 Proposed Drainage Site Plan Layout Sheet 6 of 8
- C-1008 S7 Proposed Drainage Site Plan Layout Sheet 7 of 8
- C-1008 S8 Proposed Drainage Site Plan Layout Sheet 8 of 8
- C-1010 Constraints Site Plan Layout
- C-1150 S1 Surface Water Outfall No.1
- C-1150 S2 Surface Water Outfall No.2
- C-1162 S1 Longitudinal Sections For Proposed Surface Water Drainage Sheet 1 of 3
- C-1163 S2 Longitudinal Sections For Proposed Surface Water Drainage Sheet 2 of 3
- C-1164 S3 Longitudinal Sections For Proposed Surface Water Drainage Sheet 3 of 3

 Phone
 +353 1 6773200

 Email
 bmce@bmce.ie

 www.bmce.ie

C-1210 Typical SuDS Details Sheet 1 C-1211 Typical SuDS Details Sheet 2 C-3007 Phasing Plan

Appendix 9

M&E Schematic Water Services Drawings CLN-OSC-ZZ-ZZ-DR-ME-0001 CLN-OSC-ZZ-ZZ-DR-ME-0002

ARCHITECTURAL AND ENGINEERING DRAWINGS AND ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS. • DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY.

- FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.
 THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER ARCHITECTURAL AND ENGINEERING DRAWINGS AND ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY.
 NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR STORED IN ANY RETRIEVAL SYSTEM OF ANY NATURE WITHOUT THE WRITTEN PERMISSION OF O'CONNOR SUTTON CRONIN AS COPYRIGHT HOLDER EXCEPT AS AGREED FOR USE ON THE PROJECT FOR WHICH THE DOCUMENT WAS ORIGINALLY ISSUED.

ev No.	Date	Revision Note	Drn by	Chkd by
P01	05.01.21	PRELIMINARY ISSUE - SKETCH	DP	JMCG

Rev No. Date Revision Note	Drn by Chkd by				40 Bowling Gre
		\mathbf{O}	\bigcirc	\bigcirc	London, EC1R 0 United Kingdom
		ENVIRONMENT ISO 1400/2015 NSAI Certified	QUALITY ISO 9001:2015 NSAI Certified	HEALTH & SAFETY OHSAS 18001:2007 NSAI Certified	
					TEL +44 207 41
			bsi. BIM Verified Design & Cons Capital/Deliver PAS 1192-2	struction ry	e: ocsc@ocs w: www.ocs
					Dublin London E

Barrett Mahony Consulting Engineers

Dublin:

Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland. Tel: +353 1 677 3200

London:

12 Mill Street, London, SE1 2AY, United Kingdom Tel: +44 203 750 3530.

Sofia: 19 Yakubitsa Street, Lozenets, Sofia 1164, Bulgaria Tel: +359 2 494 9772

WWW.BMCE.IE